In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interi...In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver' s ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.展开更多
为了降低拖拉机驾驶室内中高频噪声,建立基于统计能量分析(SEA)方法的驾驶室内噪声预测模型。通过理论计算和试验方法确定模型的基本参数和激励输入,通过仿真与试验对比验证了SEA模型的准确性。最后对驾驶室内声腔的功率输入分析,得到...为了降低拖拉机驾驶室内中高频噪声,建立基于统计能量分析(SEA)方法的驾驶室内噪声预测模型。通过理论计算和试验方法确定模型的基本参数和激励输入,通过仿真与试验对比验证了SEA模型的准确性。最后对驾驶室内声腔的功率输入分析,得到对驾驶室内噪声贡献较大的板件子系统,据此提出有针对性的声学包装改进方案,仿真结果表明该声学包装设计方案可以有效降低驾驶室内中高频噪声,总声压级降低1.87 d B(A),为拖拉机驾驶室内噪声控制及声学包装优化提供有效依据。展开更多
基金Sponsored by the National Natural Science Foundation of China (50875022)Research Foundation of Beijing Institute of Technology(20070342012)
文摘In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver' s ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.
文摘为了降低拖拉机驾驶室内中高频噪声,建立基于统计能量分析(SEA)方法的驾驶室内噪声预测模型。通过理论计算和试验方法确定模型的基本参数和激励输入,通过仿真与试验对比验证了SEA模型的准确性。最后对驾驶室内声腔的功率输入分析,得到对驾驶室内噪声贡献较大的板件子系统,据此提出有针对性的声学包装改进方案,仿真结果表明该声学包装设计方案可以有效降低驾驶室内中高频噪声,总声压级降低1.87 d B(A),为拖拉机驾驶室内噪声控制及声学包装优化提供有效依据。