This editorial examines the therapeutic potential of traditional Chinese medicine(TCM)for aggressive cancers,particularly liver cancer.It highlights the study by Huang et al,which shows how Calculus bovis,a component ...This editorial examines the therapeutic potential of traditional Chinese medicine(TCM)for aggressive cancers,particularly liver cancer.It highlights the study by Huang et al,which shows how Calculus bovis,a component of the TCM Pien Tze Huang,suppresses liver cancer by inhibiting M2 macrophage polarization via the Wnt/β-catenin pathway.This research emphasizes the importance of transitioning from effective TCM formulations to isolating active components and understanding their mechanisms.While the study provides valuable insights,it primarily focuses on the Wnt/β-catenin pathway and does not delve deeply into the mechanisms of individual components.Future research should aim to comprehensively study these components,explore their interactions,and validate findings through clinical trials.This approach will integrate traditional wisdom with modern scientific validation,advancing the development of innovative cancer treatments based on TCM formulations.展开更多
Since the diccovery of neural stem cells(NSCs)in the embryonic and adult mammalian central nerous system,it provided novel ideas forneurogenesis as the potential of proliferation and differentiation of NSCs.One of the...Since the diccovery of neural stem cells(NSCs)in the embryonic and adult mammalian central nerous system,it provided novel ideas forneurogenesis as the potential of proliferation and differentiation of NSCs.One of the ways to promote the clinical application of neural stem cells(NSCs)is searching effective methods which regulate the proliferation and differentiation.This is also a problem urgently to be solved in medical field.Plenty of earlier studies have shown that traditional chinese medicine can promote the proliferation and differentiation of NSCs by regulating the related signaling pathway in vivo and in vitro.The reports of Chinese and foreign literatures on regulating the proliferation and differentiation of neural stem cells in recent ten years and their target and signaling pathways is analyzed in this review.The traditional chinese medicine regulate proliferation and differentiation of NSCs by the signaling pathways of Notch,PI3K/Akt,Wnt/β-catenin,and GFs.And,those signaling pathways have cross-talk in the regulation progress.Moreover,some traditional Chinese medicine,such as astragalus,has a variety of active ingredients to regulate proliferation and differentiation of NSCs through different signaling pathways.However,to accelerate the clinical application of neural stem cells,the studies aboutthe proliferation and differentiation of NSCs and Chinese medicine should be further deepened,the mechanism of multiple targets and the comprehensive regulation function of traditional Chinese medicine should be clarified.展开更多
[ Objective] To study the therapeutic effects of traditional Chinese medicine prescriptions on infectious bronchitis (IB) and find a novel avenue for prevention and treatment of viral diseases in poultry. [Method] A...[ Objective] To study the therapeutic effects of traditional Chinese medicine prescriptions on infectious bronchitis (IB) and find a novel avenue for prevention and treatment of viral diseases in poultry. [Method] A total of 160 cockerels at the age of 15 d were divided into four groups randomly, including traditional Chinese medicine group, moroxydine control group, challenge control group and healthy control group. Except the healthy control group, other groups were challenged with infectious bronchitis virus (IBV) on Day 15. After 48 h post challenge, the traditional Chinese medicine groupand moroxydine control group were respectively administrated with Chinese herbal medicine prescription and moroxydine, continuously for 5 d. The immune organ indexes and macrephage phagocytic indexes were detected on Day 18, 24 and 30, respectively. [ Result] The immune organ indexes and macrophage phagocytic indexes were not significantly different between traditional Chinese medicine group and moroxydine control group on Day 18. But all the indexes of the traditional Chinese medicine groups were increased significantly ( P 〈 0.05) on Day 24 and 30, and showed extremely significant difference ( P 〈 0.01 ) with those of challenge control group on Day 30. [ Conclusion] The traditional Chinese herbal medicine can enhance macrophage phagocytic indexes and immune organs indexes of chickens infected by IBV.展开更多
Aims: To study RBL-2H3 cell degranulation phenomena induced by some TCMIs through cell morphological and ultra-structural observation, released enzyme activity and establish RBL-2H3 cell degranulation test indicated ...Aims: To study RBL-2H3 cell degranulation phenomena induced by some TCMIs through cell morphological and ultra-structural observation, released enzyme activity and establish RBL-2H3 cell degranulation test indicated by β- hexosaminidase activity as a method to evaluate TCMIs at nonclinical stage. Methods: RBL-2H3 cells were used to study the degranulation by co-culture with positive control C48/80 and some TCMIs through morphological and ultra-structure observation, β-hexosaminidase activity detection. RBL-2H3 cell degranulation test was established to detect β-hexosaminidase activity caused by 17 kinds of TCMIs and their ingredients. The cytotoxicity effect of some TCMIs on both RBL 2H3 and BRL cells was measured by CCK-8 assay. Results: Toluidine blue staining and ultra-structure of electronic microscope observation of treated RBL-2H3 cells showed degranulation morphologically. Detection of β-hexosaminidase activity in the supernatant of treated cells showed some TCMIs had elevated enzyme release rates. Further analysis of the ingredients and compound in Tanreqing Injection and Shengmai Injection showed Scutellaria baicalensis Georgi in Tanreqing Injection, Red ginseng and Fructus Schisandrae Chinensis in Shengmai Injection were responsible to the degranulation of RBL-2H3 cells. Osmotic pressures and pH influenced RBL-2H3 degranulation. High Osmotic pressure of Tanreqing Injection and low pH of chlorogenic acid at 2.5 and 5.0 mmol/L congcentration might be responsible to high β-hexosaminidase activity. Most of the TCMIs inducing degranulation had cytotoxicity effect for both RBL-2H3 and BRL cells, but some TCMIs inducing degranulation had no cytotoxicity effect. Conclusion: Some TCMIs can induce degranulation of RBL-2H3 cells;RBL-2H3 cell degranulation test can be used in non-clinical stage to detect the risk causing anaphylactoid reactions. Osmotic pressures and pH influenced RBL-2H3 degranulation, and they should be measured before testing. The mechanism of degranulation caused by some TCMIs is cytotoxic, and some are non-cytotoxic and may be through exicytosis.展开更多
Due to the unique features of innate immune cells, the role of γδT cells in tumor immunity has gradually attracted more and more attention. Previous studies have found that γδT cells play a dual role in tumor immu...Due to the unique features of innate immune cells, the role of γδT cells in tumor immunity has gradually attracted more and more attention. Previous studies have found that γδT cells play a dual role in tumor immunology: tumor-promoting and tumor-controlling.The anti-tumor therapy of γδT cells has made remarkable success in clinical application. Especially in recent years, researchers have provided some novel effective ways such as γδT cells exosomes and adoptive chimeric antigen receptor-γδT cells immunotherapy. However, some problems remain to be solved, such as low expansion rate, poor targeting, and tumor microenvironment limiting the effectiveness of γδT immunotherapy. Traditional Chinese medicine is expected to play a positive role in the body immune-enhancing function, promoting the proliferation and activation of γδT cells, and inducing the differentiation ofγδT cells. In this review, we summarize the recent research progress and urgent problems of γδT cells in anti-tumor immunotherapy. Moreover, some new strategies of γδT cells for tumor immunotherapy were proposed.展开更多
Objective:To review the protective effect of traditional Chinese medicine(TCM)on brain cells.Methods:The domestic journals and literature are searched and reviewed,classifies them according to the mechanisms of TCM,su...Objective:To review the protective effect of traditional Chinese medicine(TCM)on brain cells.Methods:The domestic journals and literature are searched and reviewed,classifies them according to the mechanisms of TCM,summaries their protective effect on brain cells.Results:Some single medicine and prescriptions possess a variety of biological activity,and has a protective effect on brain cells.Conclusion:Some TCM possess a variety of biological activity and have a protective effect on brain cells,so there are broad prospects to develop and apply these TCM.展开更多
Wistar rats were intragastrical y perfused with Chinese medicines used for tonifying the kidney. These included 0.180 g/mL of Herba Epimedi (Epimedium), Semen Cuscutae (Dodder Seed), or Herba Cistanches (Desertli...Wistar rats were intragastrical y perfused with Chinese medicines used for tonifying the kidney. These included 0.180 g/mL of Herba Epimedi (Epimedium), Semen Cuscutae (Dodder Seed), or Herba Cistanches (Desertliving Cistanche), 0.04 mg/mL monoamine oxidase-B inhibitor selegiline, or distil ed water for 14 consecutive days to prepare drug-containing serum or blank serum. MES23.5 cells in the logarithmic phase were cultured in media supplemented with 15%drug-containing serum for 24 hours, fol owed by incubation in culture solution containing 100μmol/L H2O2 for 3 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow tometry results showed that al drug-containing serums improved the survival rate of H 2 O 2-injured MES23.5 cells, inhibited pro-apoptotic FasL and caspase-3 expression, promoted anti-apoptotic Bcl-2 expression. However, drug-containing serums had little influence on Fas expression in H 2 O 2-injured MES23.5 cells. Enzyme-linked immunosorbent assay results showed that serum containing Herba Cistanches or Herba Epimedi increased the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cellline-derived neurotrophic factor in injured MES23.5 cells;serum containing Semen Cuscutae only increased brain-derived neurotrophic factor expres-sion; while expression of the above neurotrophic factors remained the same in cells treated with serum containing selegiline. These findings indicate that Chinese medicines used to tonify the kid-ney can protect nerve cells by regulating the expression of apoptosis-related factors and neuro-trophic factors in MES23.5 cells.展开更多
Lung cancer is one of the most common major diseases that seriously threaten human health,lung cancer includes small cell lung cancer(SCLC)and non-small cell lung cancer(NSCLC).Although patients with SCLC account for ...Lung cancer is one of the most common major diseases that seriously threaten human health,lung cancer includes small cell lung cancer(SCLC)and non-small cell lung cancer(NSCLC).Although patients with SCLC account for about 20%of the total number of patients with lung cancer,the mortality rate is much higher than that of patients with NSCLC.Integrated traditional Chinese and Western medicine has obvious advantages in the treatment of patients with SCLC.According to the relevant literature reports on the treatment of SCLC in recent years,this article will summarize the research progress of integrated traditional Chinese and western medicine in the treatmentof SCLC from the aspects of traditional Chinese medicine(TCM)combined with surgery,chemotherapy,radiotherapy,and molecular targeted therapy.展开更多
The incidence of diabetic ulcer is high, the disability and mortality are also high, and its treatment is difficult, and the healing mechanism is not clear. The main reason for the delayed healing of DU is that the ch...The incidence of diabetic ulcer is high, the disability and mortality are also high, and its treatment is difficult, and the healing mechanism is not clear. The main reason for the delayed healing of DU is that the chronic inflammation window period is too long, and macrophages play a key role in its healing process. The polarization of macrophages controls the length of the inflammatory phase, and autophagy is thought to be closely related to the tendency of macrophage polarization. Autophagy regulators have limited clinical application. Traditional Chinese medicine may become an ideal autophagy inducer and provide new ideas and strategies for clinical treatment of diabetic ulcers. This article summarizes the role of macrophage autophagic polarization in the healing of diabetic ulcers and the prospects of traditional Chinese medicine.展开更多
Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling path...Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling pathway and the impact of endoplasmic reticulum(ER)stress and autophagy.Methods: Necrostatin-1(Nec-1),lactate dehydrogenase release(LDH)assay,and Hoechst/propidium iodide(PI)double staining were employed to validate the mode of cell death.Western blot was used to detect the cleavage of GSDME and the expression of light chain 3(LC3)and BIP.Results: Celastrol induced cell swelling with large bubbles,which is consistent with the pyroptotic phenotype.Moreover,treatment with celastrol induced GSDME cleavage,indicating the activation of GSDME-mediated pyroptosis.GSDME knockout via CRISPR/Cas9 blocked the pyroptotic morphology of celastrol in HeLa cells.In addition,cleavage of GSDME was attenuated by a specific caspase-3 inhibitor in celastrol-treated cells,suggesting that GSDME activation was induced by caspase-3.Mechanistically,celastrol induced endoplasmic reticulum(ER)stress and autophagy in HeLa cells,and other ER stress inducers produced effects consistent with those of celastrol.Conclusion: These findings suggest that celastrol triggers caspase-3/GSDME-dependent pyroptosis via activation of ER stress,which may shed light on the potential antitumor clinical applications of celastrol.展开更多
To investigate the anti-human papilloma virus (HPV) effect of the external liniment of traditional Chinese medicine “Keyouling”, the efficacy of this drug acting upon the proliferation and growth of the normal epide...To investigate the anti-human papilloma virus (HPV) effect of the external liniment of traditional Chinese medicine “Keyouling”, the efficacy of this drug acting upon the proliferation and growth of the normal epidermis cells of rabbits′ penis prepuce in different concentrations was observed. An experimental model of pathology of histocytes infected with HPV in vitro was established by using the human HPV infected prepuce epidermis cells as virus carrier to infect the sub-cultured epidermis cells of rabbits′ penis prepuce. The direct killing effect and the blocking effect of infections of epidermis cells in rabbits′ penis prepuce induced by HPV with different concentrations of “Keyouling” were determined by 3 kinds of culture methods: (1) the infected epidermis cells of rabbits′ penis prepuce were challenged by co-culture with HPV suspension and with culture medium containing drug; (2) the co-culture with epidermis cells of rabbits′ penis prepuce and HPV suspension was challenged with drug; (3) co-culture with culture medium containing drug and epidermis cells of rabbits′ penis prepuce was challenged with HPV suspension. It was found that “Keyouling” had little effect on the proliferation and growth of the normal epidermis cells of rabbits′ penis prepuce, but it had direct killing effect on HPV, and blocked effectively the infection of the epidermis cells of rabbits′ penis prepuce by HPV. It concludes that “Keyouling” has significant killing effect to HPV, but not normal histocytes in vitro , indicating that it is safe for clinical use. Its blocking effect on the HPV infection of rabbits′ penis prepuce epidermis cells suggested “Keyouling” may be clinically used to prevent the development of tumors or to inhibit the further progression or metastasis of tumors.展开更多
背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉...背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉粥样硬化的作用机制。方法:计算机检索Web of Science、PubMed及中国知网等数据库,检索时限为各数据库建库至2024年6月。中文检索词为“AMPK,脂肪酸氧化,巨噬细胞极化,中药,动脉粥样硬化,冠心病”等;英文检索词为“AMPK,fatty acid oxidation,macrophage polarization,Traditional Chinese Medicine,atherosclerosis,coronary heart disease”等,最终纳入62篇文献。结果与结论:①巨噬细胞的能量代谢从氧化磷酸化向糖酵解的转变,在动脉粥样硬化进展中起关键作用。在巨噬细胞中腺苷酸活化蛋白激酶激活后,通过促进脂肪酸氧化和M2型极化,发挥抗炎和稳定动脉斑块的作用。②中药单药(如人参、黄芪、黄精等)及复方(如黄连解毒汤、养心舒脉颗粒、调肝导浊方等)通过调控腺苷酸活化蛋白激酶途径干预核因子κB、过氧化物酶体增殖物激活受体γ、哺乳动物雷帕霉素靶蛋白等多条信号通路影响巨噬细胞的代谢方式,改变细胞功能,从而发挥治疗疾病的作用。③未来的研究应关注腺苷酸活化蛋白激酶、代谢与极化途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为动脉粥样硬化的治疗提供新的策略。展开更多
背景:心肌损伤修复过程涉及复杂的细胞和分子机制,尤其是线粒体钙稳态、巨噬细胞的自噬与焦亡途径。中药在改善心肌损伤方面有显著的临床疗效,但其作用机制尚需深入研究。目的:探讨线粒体钙稳态介导的巨噬细胞自噬与焦亡途径在心肌损伤...背景:心肌损伤修复过程涉及复杂的细胞和分子机制,尤其是线粒体钙稳态、巨噬细胞的自噬与焦亡途径。中药在改善心肌损伤方面有显著的临床疗效,但其作用机制尚需深入研究。目的:探讨线粒体钙稳态介导的巨噬细胞自噬与焦亡途径在心肌损伤中的作用,并总结中药在这一领域的研究进展。方法:计算机检索Web of Science、PubMed及中国知网等数据库,从建库至2024年3月的相关文献。中文检索词为“线粒体钙稳态,巨噬细胞自噬,巨噬细胞焦亡,中药,心肌损伤,心肌损伤再灌注”等;英文检索词为“Mitochondrial calcium homeostasis,Macrophage autophagy,Macrophage pyroptosis,Traditional Chinese medicine,Myocardial injury”等。通过文献回顾分析线粒体钙稳态与巨噬细胞自噬、焦亡之间的关系,探究其在心肌损伤中的作用机制,总结中药多靶点、多通路影响的途径。结果与结论:①研究发现,线粒体钙稳态的维持与心肌细胞功能的正常运转密切相关。巨噬细胞可通过自噬与焦亡途径参与心肌损伤的修复过程,自噬有助于细胞的清除和炎症反应的调节,而焦亡则可通过释放炎症因子影响心肌修复。②中医药通过多种机制调节线粒体钙稳态和巨噬细胞功能,如黄芪甲苷通过降低线粒体膜电位和抑制细胞色素C来调节钙稳态,淫羊藿苷通过减少β-淀粉样蛋白沉积来发挥作用;中药复方和单味药物通过激活或抑制特定的信号通路,如PI3K/AKT、核因子κB等通路来促进心肌损伤的修复。③未来的研究应关注线粒体钙稳态、自噬与焦亡途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为心肌损伤的治疗提供新的策略和药物。展开更多
背景:NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎性小体与脊髓损伤后的神经炎症密切相关,小胶质细胞极化和焦亡在其中发挥关键作用,靶向调控NLRP3有利于诱导小胶质细胞...背景:NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎性小体与脊髓损伤后的神经炎症密切相关,小胶质细胞极化和焦亡在其中发挥关键作用,靶向调控NLRP3有利于诱导小胶质细胞从M1促炎表型向M2抗炎表型极化和调节小胶质细胞焦亡,是一个有前景的治疗策略。目的:归纳NLRP3炎性小体在脊髓损伤后小胶质细胞中作用的分子机制以及治疗策略的研究进展。方法:检索PubMed、Web of Science和中国知网数据库,英文检索词为“spinal cord injury,NLRP3,microglia,polarization,pyroptosis”,中文检索词为“脊髓损伤,NLRP3,小胶质细胞,极化,焦亡,炎症”,按纳入和排除标准共纳入79篇文献进行总结。结果与结论:①目前,关于脊髓损伤复杂的发病机制尚未有统一定论,大量研究表明脊髓损伤与炎症因子和信号通路关系密切,以NLRP3炎性小体作为其发病机制和治疗突破口的相关研究也是当前的热点。②NLRP3炎性小体在脊髓损伤后的炎症反应、氧化应激和神经元恢复等起到关键作用。③小胶质细胞是脑和脊髓中的免疫细胞,是继发性脊髓损伤最重要的调节因子,脊髓损伤后小胶质细胞对内部环境作出调整,主要表现为极化及焦亡,产生大量炎症因子,阻碍脊髓损伤的神经再生和功能恢复,通过调控小胶质细胞表型变化,是治疗脊髓损伤的另一个关键因素。④NLRP3炎性小体与小胶质细胞密切相关,脊髓损伤后NLRP3炎性小体主要在小胶质细胞中表达,其会促进小胶质细胞向M1极化和促进促裂解蛋白D的产生,进一步破坏神经稳态,从而加重脊髓损伤的进展。⑤许多分子参与NLRP3炎性小体调控小胶质细胞,其中核转录因子κB及MAPK信号通路促进NLRP3炎性小体表达,其他信号通路抑制该炎性小体表达。⑥目前有大量的外源性分子及药物调控NLRP3炎性小体,临床应用前景广泛,已有相关药物处于临床试验阶段并取得良好疗效,如NLRP3特异性抑制剂MCC950,但如何精准控制靶向递送、减少对其他组织器官影响等关键问题亟需解决,随着研究的深入,未来有望在脊髓损伤治疗方式上作出新的突破。展开更多
Stroke is one of the leading causes of death and disability in adults worldwide,resulting in huge social and financial burdens.Extracts from herbs,especially those used in Chinese medicine,have emerged as new pharmace...Stroke is one of the leading causes of death and disability in adults worldwide,resulting in huge social and financial burdens.Extracts from herbs,especially those used in Chinese medicine,have emerged as new pharmaceuticals for stroke treatment.Here we review the evidence from preclinical studies investigating neuroprotective properties of Chinese medicinal compounds through their application in acute and subacute phases of ischemic stroke,and highlight potential mechanisms underlying their therapeutic effects.It is noteworthy that many herbal compounds have been shown to target multiple mechanisms and in combinations may exert synergistic effects on signaling pathways,thereby attenuating multiple aspects of ischemic pathology.We conclude the paper with a general discussion of the prospects for novel natural compound-based regimens against stroke.展开更多
The ginkgo biloba extract EGb761 improves memory loss and cognitive impairments in patients with senile dementia. It also promotes proliferation of neural stem cells in the subventricular zone in Parkinson's disease ...The ginkgo biloba extract EGb761 improves memory loss and cognitive impairments in patients with senile dementia. It also promotes proliferation of neural stem cells in the subventricular zone in Parkinson's disease model mice and in the hippocampal zone of young epileptic rats. However, it remains unclear whether EGb761 enhances proliferation of endogenous neural stem cells in the brain of rats with vascular dementia. In this study, a vascular dementia model was established by repeatedly clipping and reperfusing the bilateral common carotid arteries of rats in combination with an intraperitoneal injection of a sodium nitroprusside solution. Seven days after establishing the model, rats were intragastrically given EGb761 at 50 mg/kg per day. Learning and memory abilities were assessed using the Morris water maze and proliferation of endogenous neural stem cells in the subventricular zone and dentate gyrus were labeled by 5-bromo-2-deoxyuridine immunofluorescence in all rats at 15 days, and 1, 2, and 4 months after model establishment. The escape latencies in Morris water maze tests of rats with vascular dementia after EGb761 treatment were significantly shorter than the model group. Immunofluorescence staining showed that the number and proliferation of 5-bromo-2-deoxyuridine-positive cells in the subventricular zone and dentate gyrus of the EGb761-treated group were significantly higher than in the model group. These experimental findings suggest that EGb761 enhances proliferation of neural stem cells in the subventricular zone and dentate gyrus, and significantly improves learning and memory in rats with vascular dementia.展开更多
Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the different...Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.展开更多
Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antJoxJdant effects of res...Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antJoxJdant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment. Nitric oxide synthase activity and concomitant nitric oxide levels increased in response to hydrogen peroxide treatment. Conversely, resveratrol treatment decreased nitric oxide synthase activity and nitric oxide levels. Resveratrol also attenuated hydrogen peroxide-induced nuclear or mitochondrial DNA damage. We propose that resveratrol may be a promising agent for protecting embryonic neural stem cells because of its potential to decrease oxidative stress by inducing higher activity of antioxidant enzymes, decreasing nitric oxide production and nitric oxide synthase activity, and alleviating both nuclear and mitochondrial DNA damage.展开更多
Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress colistin sulfate-...Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress colistin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5-500 μg/mL) for 24 hours resulted in PCl2 cell apoptosis. In addition, caspase-3 activity, lactate dehydrogenase level and free radical content increased in a dose-dependent manner. Subsequently, PC12 cells were pretreated with baicalin (25, 50 and 100 pg/mL), and exposed to 125 pg/mL colistin sulfate. Cell morphology markedly changed, and cell viability increased. Moreover, caspase-3 activity, lac- tate dehydrogenase level and free radical content decreased. Results indicated that baicalin inhib- ited colistin sulfate-induced PC12 cell apoptosis by suppressing free radical injury, and reducing caspase-3 activity and lactate dehydrogenase activity.展开更多
基金Supported by National Natural Science Foundation of China,No.82204909.
文摘This editorial examines the therapeutic potential of traditional Chinese medicine(TCM)for aggressive cancers,particularly liver cancer.It highlights the study by Huang et al,which shows how Calculus bovis,a component of the TCM Pien Tze Huang,suppresses liver cancer by inhibiting M2 macrophage polarization via the Wnt/β-catenin pathway.This research emphasizes the importance of transitioning from effective TCM formulations to isolating active components and understanding their mechanisms.While the study provides valuable insights,it primarily focuses on the Wnt/β-catenin pathway and does not delve deeply into the mechanisms of individual components.Future research should aim to comprehensively study these components,explore their interactions,and validate findings through clinical trials.This approach will integrate traditional wisdom with modern scientific validation,advancing the development of innovative cancer treatments based on TCM formulations.
基金supported by National Natural Science Foundation of China(81473549)Fundamental Research Funds for Central Universities(XDJK2017E158)
文摘Since the diccovery of neural stem cells(NSCs)in the embryonic and adult mammalian central nerous system,it provided novel ideas forneurogenesis as the potential of proliferation and differentiation of NSCs.One of the ways to promote the clinical application of neural stem cells(NSCs)is searching effective methods which regulate the proliferation and differentiation.This is also a problem urgently to be solved in medical field.Plenty of earlier studies have shown that traditional chinese medicine can promote the proliferation and differentiation of NSCs by regulating the related signaling pathway in vivo and in vitro.The reports of Chinese and foreign literatures on regulating the proliferation and differentiation of neural stem cells in recent ten years and their target and signaling pathways is analyzed in this review.The traditional chinese medicine regulate proliferation and differentiation of NSCs by the signaling pathways of Notch,PI3K/Akt,Wnt/β-catenin,and GFs.And,those signaling pathways have cross-talk in the regulation progress.Moreover,some traditional Chinese medicine,such as astragalus,has a variety of active ingredients to regulate proliferation and differentiation of NSCs through different signaling pathways.However,to accelerate the clinical application of neural stem cells,the studies aboutthe proliferation and differentiation of NSCs and Chinese medicine should be further deepened,the mechanism of multiple targets and the comprehensive regulation function of traditional Chinese medicine should be clarified.
基金supported by Research Fund of Hebei Agricultural University
文摘[ Objective] To study the therapeutic effects of traditional Chinese medicine prescriptions on infectious bronchitis (IB) and find a novel avenue for prevention and treatment of viral diseases in poultry. [Method] A total of 160 cockerels at the age of 15 d were divided into four groups randomly, including traditional Chinese medicine group, moroxydine control group, challenge control group and healthy control group. Except the healthy control group, other groups were challenged with infectious bronchitis virus (IBV) on Day 15. After 48 h post challenge, the traditional Chinese medicine groupand moroxydine control group were respectively administrated with Chinese herbal medicine prescription and moroxydine, continuously for 5 d. The immune organ indexes and macrephage phagocytic indexes were detected on Day 18, 24 and 30, respectively. [ Result] The immune organ indexes and macrophage phagocytic indexes were not significantly different between traditional Chinese medicine group and moroxydine control group on Day 18. But all the indexes of the traditional Chinese medicine groups were increased significantly ( P 〈 0.05) on Day 24 and 30, and showed extremely significant difference ( P 〈 0.01 ) with those of challenge control group on Day 30. [ Conclusion] The traditional Chinese herbal medicine can enhance macrophage phagocytic indexes and immune organs indexes of chickens infected by IBV.
文摘Aims: To study RBL-2H3 cell degranulation phenomena induced by some TCMIs through cell morphological and ultra-structural observation, released enzyme activity and establish RBL-2H3 cell degranulation test indicated by β- hexosaminidase activity as a method to evaluate TCMIs at nonclinical stage. Methods: RBL-2H3 cells were used to study the degranulation by co-culture with positive control C48/80 and some TCMIs through morphological and ultra-structure observation, β-hexosaminidase activity detection. RBL-2H3 cell degranulation test was established to detect β-hexosaminidase activity caused by 17 kinds of TCMIs and their ingredients. The cytotoxicity effect of some TCMIs on both RBL 2H3 and BRL cells was measured by CCK-8 assay. Results: Toluidine blue staining and ultra-structure of electronic microscope observation of treated RBL-2H3 cells showed degranulation morphologically. Detection of β-hexosaminidase activity in the supernatant of treated cells showed some TCMIs had elevated enzyme release rates. Further analysis of the ingredients and compound in Tanreqing Injection and Shengmai Injection showed Scutellaria baicalensis Georgi in Tanreqing Injection, Red ginseng and Fructus Schisandrae Chinensis in Shengmai Injection were responsible to the degranulation of RBL-2H3 cells. Osmotic pressures and pH influenced RBL-2H3 degranulation. High Osmotic pressure of Tanreqing Injection and low pH of chlorogenic acid at 2.5 and 5.0 mmol/L congcentration might be responsible to high β-hexosaminidase activity. Most of the TCMIs inducing degranulation had cytotoxicity effect for both RBL-2H3 and BRL cells, but some TCMIs inducing degranulation had no cytotoxicity effect. Conclusion: Some TCMIs can induce degranulation of RBL-2H3 cells;RBL-2H3 cell degranulation test can be used in non-clinical stage to detect the risk causing anaphylactoid reactions. Osmotic pressures and pH influenced RBL-2H3 degranulation, and they should be measured before testing. The mechanism of degranulation caused by some TCMIs is cytotoxic, and some are non-cytotoxic and may be through exicytosis.
文摘Due to the unique features of innate immune cells, the role of γδT cells in tumor immunity has gradually attracted more and more attention. Previous studies have found that γδT cells play a dual role in tumor immunology: tumor-promoting and tumor-controlling.The anti-tumor therapy of γδT cells has made remarkable success in clinical application. Especially in recent years, researchers have provided some novel effective ways such as γδT cells exosomes and adoptive chimeric antigen receptor-γδT cells immunotherapy. However, some problems remain to be solved, such as low expansion rate, poor targeting, and tumor microenvironment limiting the effectiveness of γδT immunotherapy. Traditional Chinese medicine is expected to play a positive role in the body immune-enhancing function, promoting the proliferation and activation of γδT cells, and inducing the differentiation ofγδT cells. In this review, we summarize the recent research progress and urgent problems of γδT cells in anti-tumor immunotherapy. Moreover, some new strategies of γδT cells for tumor immunotherapy were proposed.
文摘Objective:To review the protective effect of traditional Chinese medicine(TCM)on brain cells.Methods:The domestic journals and literature are searched and reviewed,classifies them according to the mechanisms of TCM,summaries their protective effect on brain cells.Results:Some single medicine and prescriptions possess a variety of biological activity,and has a protective effect on brain cells.Conclusion:Some TCM possess a variety of biological activity and have a protective effect on brain cells,so there are broad prospects to develop and apply these TCM.
基金supported by the Developmental Fund of Chen Keji Integrative Medicine,No.CKJ2010025the Key Foundation of Society Development in Fujian Province,No.2013Y0059
文摘Wistar rats were intragastrical y perfused with Chinese medicines used for tonifying the kidney. These included 0.180 g/mL of Herba Epimedi (Epimedium), Semen Cuscutae (Dodder Seed), or Herba Cistanches (Desertliving Cistanche), 0.04 mg/mL monoamine oxidase-B inhibitor selegiline, or distil ed water for 14 consecutive days to prepare drug-containing serum or blank serum. MES23.5 cells in the logarithmic phase were cultured in media supplemented with 15%drug-containing serum for 24 hours, fol owed by incubation in culture solution containing 100μmol/L H2O2 for 3 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow tometry results showed that al drug-containing serums improved the survival rate of H 2 O 2-injured MES23.5 cells, inhibited pro-apoptotic FasL and caspase-3 expression, promoted anti-apoptotic Bcl-2 expression. However, drug-containing serums had little influence on Fas expression in H 2 O 2-injured MES23.5 cells. Enzyme-linked immunosorbent assay results showed that serum containing Herba Cistanches or Herba Epimedi increased the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cellline-derived neurotrophic factor in injured MES23.5 cells;serum containing Semen Cuscutae only increased brain-derived neurotrophic factor expres-sion; while expression of the above neurotrophic factors remained the same in cells treated with serum containing selegiline. These findings indicate that Chinese medicines used to tonify the kid-ney can protect nerve cells by regulating the expression of apoptosis-related factors and neuro-trophic factors in MES23.5 cells.
文摘Lung cancer is one of the most common major diseases that seriously threaten human health,lung cancer includes small cell lung cancer(SCLC)and non-small cell lung cancer(NSCLC).Although patients with SCLC account for about 20%of the total number of patients with lung cancer,the mortality rate is much higher than that of patients with NSCLC.Integrated traditional Chinese and Western medicine has obvious advantages in the treatment of patients with SCLC.According to the relevant literature reports on the treatment of SCLC in recent years,this article will summarize the research progress of integrated traditional Chinese and western medicine in the treatmentof SCLC from the aspects of traditional Chinese medicine(TCM)combined with surgery,chemotherapy,radiotherapy,and molecular targeted therapy.
基金National Natural Science Foundation of China(81774310)National Natural Science Foundation of China Youth Project(81804095)Shanghai Traditional Chinese Medicine Health Service Collaborative Innovation Center Project(ZYJKFW201701002)
文摘The incidence of diabetic ulcer is high, the disability and mortality are also high, and its treatment is difficult, and the healing mechanism is not clear. The main reason for the delayed healing of DU is that the chronic inflammation window period is too long, and macrophages play a key role in its healing process. The polarization of macrophages controls the length of the inflammatory phase, and autophagy is thought to be closely related to the tendency of macrophage polarization. Autophagy regulators have limited clinical application. Traditional Chinese medicine may become an ideal autophagy inducer and provide new ideas and strategies for clinical treatment of diabetic ulcers. This article summarizes the role of macrophage autophagic polarization in the healing of diabetic ulcers and the prospects of traditional Chinese medicine.
基金supported by grants from startup fund program at Beijing University of Chinese Medicine(90011451310011)key research fund for drug discovery in Chinese medicine at Beijing University of Chinese Medicine(1000061223476)startup fund program at Beijing University of Chinese Medicine(90020361220006).
文摘Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling pathway and the impact of endoplasmic reticulum(ER)stress and autophagy.Methods: Necrostatin-1(Nec-1),lactate dehydrogenase release(LDH)assay,and Hoechst/propidium iodide(PI)double staining were employed to validate the mode of cell death.Western blot was used to detect the cleavage of GSDME and the expression of light chain 3(LC3)and BIP.Results: Celastrol induced cell swelling with large bubbles,which is consistent with the pyroptotic phenotype.Moreover,treatment with celastrol induced GSDME cleavage,indicating the activation of GSDME-mediated pyroptosis.GSDME knockout via CRISPR/Cas9 blocked the pyroptotic morphology of celastrol in HeLa cells.In addition,cleavage of GSDME was attenuated by a specific caspase-3 inhibitor in celastrol-treated cells,suggesting that GSDME activation was induced by caspase-3.Mechanistically,celastrol induced endoplasmic reticulum(ER)stress and autophagy in HeLa cells,and other ER stress inducers produced effects consistent with those of celastrol.Conclusion: These findings suggest that celastrol triggers caspase-3/GSDME-dependent pyroptosis via activation of ER stress,which may shed light on the potential antitumor clinical applications of celastrol.
文摘To investigate the anti-human papilloma virus (HPV) effect of the external liniment of traditional Chinese medicine “Keyouling”, the efficacy of this drug acting upon the proliferation and growth of the normal epidermis cells of rabbits′ penis prepuce in different concentrations was observed. An experimental model of pathology of histocytes infected with HPV in vitro was established by using the human HPV infected prepuce epidermis cells as virus carrier to infect the sub-cultured epidermis cells of rabbits′ penis prepuce. The direct killing effect and the blocking effect of infections of epidermis cells in rabbits′ penis prepuce induced by HPV with different concentrations of “Keyouling” were determined by 3 kinds of culture methods: (1) the infected epidermis cells of rabbits′ penis prepuce were challenged by co-culture with HPV suspension and with culture medium containing drug; (2) the co-culture with epidermis cells of rabbits′ penis prepuce and HPV suspension was challenged with drug; (3) co-culture with culture medium containing drug and epidermis cells of rabbits′ penis prepuce was challenged with HPV suspension. It was found that “Keyouling” had little effect on the proliferation and growth of the normal epidermis cells of rabbits′ penis prepuce, but it had direct killing effect on HPV, and blocked effectively the infection of the epidermis cells of rabbits′ penis prepuce by HPV. It concludes that “Keyouling” has significant killing effect to HPV, but not normal histocytes in vitro , indicating that it is safe for clinical use. Its blocking effect on the HPV infection of rabbits′ penis prepuce epidermis cells suggested “Keyouling” may be clinically used to prevent the development of tumors or to inhibit the further progression or metastasis of tumors.
文摘背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉粥样硬化的作用机制。方法:计算机检索Web of Science、PubMed及中国知网等数据库,检索时限为各数据库建库至2024年6月。中文检索词为“AMPK,脂肪酸氧化,巨噬细胞极化,中药,动脉粥样硬化,冠心病”等;英文检索词为“AMPK,fatty acid oxidation,macrophage polarization,Traditional Chinese Medicine,atherosclerosis,coronary heart disease”等,最终纳入62篇文献。结果与结论:①巨噬细胞的能量代谢从氧化磷酸化向糖酵解的转变,在动脉粥样硬化进展中起关键作用。在巨噬细胞中腺苷酸活化蛋白激酶激活后,通过促进脂肪酸氧化和M2型极化,发挥抗炎和稳定动脉斑块的作用。②中药单药(如人参、黄芪、黄精等)及复方(如黄连解毒汤、养心舒脉颗粒、调肝导浊方等)通过调控腺苷酸活化蛋白激酶途径干预核因子κB、过氧化物酶体增殖物激活受体γ、哺乳动物雷帕霉素靶蛋白等多条信号通路影响巨噬细胞的代谢方式,改变细胞功能,从而发挥治疗疾病的作用。③未来的研究应关注腺苷酸活化蛋白激酶、代谢与极化途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为动脉粥样硬化的治疗提供新的策略。
文摘背景:心肌损伤修复过程涉及复杂的细胞和分子机制,尤其是线粒体钙稳态、巨噬细胞的自噬与焦亡途径。中药在改善心肌损伤方面有显著的临床疗效,但其作用机制尚需深入研究。目的:探讨线粒体钙稳态介导的巨噬细胞自噬与焦亡途径在心肌损伤中的作用,并总结中药在这一领域的研究进展。方法:计算机检索Web of Science、PubMed及中国知网等数据库,从建库至2024年3月的相关文献。中文检索词为“线粒体钙稳态,巨噬细胞自噬,巨噬细胞焦亡,中药,心肌损伤,心肌损伤再灌注”等;英文检索词为“Mitochondrial calcium homeostasis,Macrophage autophagy,Macrophage pyroptosis,Traditional Chinese medicine,Myocardial injury”等。通过文献回顾分析线粒体钙稳态与巨噬细胞自噬、焦亡之间的关系,探究其在心肌损伤中的作用机制,总结中药多靶点、多通路影响的途径。结果与结论:①研究发现,线粒体钙稳态的维持与心肌细胞功能的正常运转密切相关。巨噬细胞可通过自噬与焦亡途径参与心肌损伤的修复过程,自噬有助于细胞的清除和炎症反应的调节,而焦亡则可通过释放炎症因子影响心肌修复。②中医药通过多种机制调节线粒体钙稳态和巨噬细胞功能,如黄芪甲苷通过降低线粒体膜电位和抑制细胞色素C来调节钙稳态,淫羊藿苷通过减少β-淀粉样蛋白沉积来发挥作用;中药复方和单味药物通过激活或抑制特定的信号通路,如PI3K/AKT、核因子κB等通路来促进心肌损伤的修复。③未来的研究应关注线粒体钙稳态、自噬与焦亡途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为心肌损伤的治疗提供新的策略和药物。
文摘背景:NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎性小体与脊髓损伤后的神经炎症密切相关,小胶质细胞极化和焦亡在其中发挥关键作用,靶向调控NLRP3有利于诱导小胶质细胞从M1促炎表型向M2抗炎表型极化和调节小胶质细胞焦亡,是一个有前景的治疗策略。目的:归纳NLRP3炎性小体在脊髓损伤后小胶质细胞中作用的分子机制以及治疗策略的研究进展。方法:检索PubMed、Web of Science和中国知网数据库,英文检索词为“spinal cord injury,NLRP3,microglia,polarization,pyroptosis”,中文检索词为“脊髓损伤,NLRP3,小胶质细胞,极化,焦亡,炎症”,按纳入和排除标准共纳入79篇文献进行总结。结果与结论:①目前,关于脊髓损伤复杂的发病机制尚未有统一定论,大量研究表明脊髓损伤与炎症因子和信号通路关系密切,以NLRP3炎性小体作为其发病机制和治疗突破口的相关研究也是当前的热点。②NLRP3炎性小体在脊髓损伤后的炎症反应、氧化应激和神经元恢复等起到关键作用。③小胶质细胞是脑和脊髓中的免疫细胞,是继发性脊髓损伤最重要的调节因子,脊髓损伤后小胶质细胞对内部环境作出调整,主要表现为极化及焦亡,产生大量炎症因子,阻碍脊髓损伤的神经再生和功能恢复,通过调控小胶质细胞表型变化,是治疗脊髓损伤的另一个关键因素。④NLRP3炎性小体与小胶质细胞密切相关,脊髓损伤后NLRP3炎性小体主要在小胶质细胞中表达,其会促进小胶质细胞向M1极化和促进促裂解蛋白D的产生,进一步破坏神经稳态,从而加重脊髓损伤的进展。⑤许多分子参与NLRP3炎性小体调控小胶质细胞,其中核转录因子κB及MAPK信号通路促进NLRP3炎性小体表达,其他信号通路抑制该炎性小体表达。⑥目前有大量的外源性分子及药物调控NLRP3炎性小体,临床应用前景广泛,已有相关药物处于临床试验阶段并取得良好疗效,如NLRP3特异性抑制剂MCC950,但如何精准控制靶向递送、减少对其他组织器官影响等关键问题亟需解决,随着研究的深入,未来有望在脊髓损伤治疗方式上作出新的突破。
基金supported by AHA Award 14SDG20480186(to LC)Kentucky Spinal Cord&Head Injury Research Trust Grant 14-12A(to KES)Startup Funds from Shaanxi University of Chinese Medicine to Young Investigators(1410170078)(to BZ)
文摘Stroke is one of the leading causes of death and disability in adults worldwide,resulting in huge social and financial burdens.Extracts from herbs,especially those used in Chinese medicine,have emerged as new pharmaceuticals for stroke treatment.Here we review the evidence from preclinical studies investigating neuroprotective properties of Chinese medicinal compounds through their application in acute and subacute phases of ischemic stroke,and highlight potential mechanisms underlying their therapeutic effects.It is noteworthy that many herbal compounds have been shown to target multiple mechanisms and in combinations may exert synergistic effects on signaling pathways,thereby attenuating multiple aspects of ischemic pathology.We conclude the paper with a general discussion of the prospects for novel natural compound-based regimens against stroke.
基金financially sponsored by the Natural Science Foundation of Shandong Province,No.Y2008C32Scientific Research Funds of Shandong Provincial Education Ministry,No.J01K09
文摘The ginkgo biloba extract EGb761 improves memory loss and cognitive impairments in patients with senile dementia. It also promotes proliferation of neural stem cells in the subventricular zone in Parkinson's disease model mice and in the hippocampal zone of young epileptic rats. However, it remains unclear whether EGb761 enhances proliferation of endogenous neural stem cells in the brain of rats with vascular dementia. In this study, a vascular dementia model was established by repeatedly clipping and reperfusing the bilateral common carotid arteries of rats in combination with an intraperitoneal injection of a sodium nitroprusside solution. Seven days after establishing the model, rats were intragastrically given EGb761 at 50 mg/kg per day. Learning and memory abilities were assessed using the Morris water maze and proliferation of endogenous neural stem cells in the subventricular zone and dentate gyrus were labeled by 5-bromo-2-deoxyuridine immunofluorescence in all rats at 15 days, and 1, 2, and 4 months after model establishment. The escape latencies in Morris water maze tests of rats with vascular dementia after EGb761 treatment were significantly shorter than the model group. Immunofluorescence staining showed that the number and proliferation of 5-bromo-2-deoxyuridine-positive cells in the subventricular zone and dentate gyrus of the EGb761-treated group were significantly higher than in the model group. These experimental findings suggest that EGb761 enhances proliferation of neural stem cells in the subventricular zone and dentate gyrus, and significantly improves learning and memory in rats with vascular dementia.
基金funded by the National Natural Science Foundation of China,No.81501185(to CR)the Key Research&Development Project of Shandong Province of China,No.2017GSF218043(to CR)the Science and Technology Planning Project of Yantai of China,No.2016WS017(to LNG),2017WS105(to HL)
文摘Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.
基金funded by the Research Fund of Ege University,Project No. 05/ECZ/020
文摘Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antJoxJdant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment. Nitric oxide synthase activity and concomitant nitric oxide levels increased in response to hydrogen peroxide treatment. Conversely, resveratrol treatment decreased nitric oxide synthase activity and nitric oxide levels. Resveratrol also attenuated hydrogen peroxide-induced nuclear or mitochondrial DNA damage. We propose that resveratrol may be a promising agent for protecting embryonic neural stem cells because of its potential to decrease oxidative stress by inducing higher activity of antioxidant enzymes, decreasing nitric oxide production and nitric oxide synthase activity, and alleviating both nuclear and mitochondrial DNA damage.
基金supported by the National Natural Science Foundation of China,No.31201951 and 31272613the Scientific and Technological Innovation Talent Scientific Research Foundation for the Returned Overseas Chinese Scholars by State Education Ministry and Heilongjiang Province in China,No.2012RFLXN005 and LC201018+1 种基金the Youth Science and Technology Foundation of Liaoning Medical University in China,No.Y2012Z023the Science and Technology Department of Liaoning Provincial Foundation Programs,No.2011214001
文摘Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress colistin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5-500 μg/mL) for 24 hours resulted in PCl2 cell apoptosis. In addition, caspase-3 activity, lactate dehydrogenase level and free radical content increased in a dose-dependent manner. Subsequently, PC12 cells were pretreated with baicalin (25, 50 and 100 pg/mL), and exposed to 125 pg/mL colistin sulfate. Cell morphology markedly changed, and cell viability increased. Moreover, caspase-3 activity, lac- tate dehydrogenase level and free radical content decreased. Results indicated that baicalin inhib- ited colistin sulfate-induced PC12 cell apoptosis by suppressing free radical injury, and reducing caspase-3 activity and lactate dehydrogenase activity.