As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology beco...As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.展开更多
This article takes 2016-2022 as the inspection period to construct an evaluation index system for the green development level of the new energy vehicle industry.The entropy method and comprehensive index are used to m...This article takes 2016-2022 as the inspection period to construct an evaluation index system for the green development level of the new energy vehicle industry.The entropy method and comprehensive index are used to measure the green development level of the new energy vehicle industry in Chongqing,and compared with neighboring provinces such as Yunnan,Guizhou,and Sichuan.Policy recommendations are proposed to promote the development of the new energy vehicle industry in Chongqing City.展开更多
New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating...New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating excessive exploitation of oil resources,a stance strongly supported by governments.However,new energy vehicles possess certain drawbacks in terms of price and usability compared to traditional counterparts.Therefore,external support is imperative for their development.This paper delineates four main sections:the background of new energy vehicle promotion and application,a comparative analysis of domestic and foreign promotion models,specific promotion suggestions,and future development prospects.By leveraging insights from economic analysis,the optimal promotion model for new energy vehicles is elucidated.展开更多
In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network techno...In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.展开更多
For a long time, the new energy automobile market has been maintained locally and cannot fonn a mechanism of the market competition. Since this year, the State Council has repeatedly broken this abuse, and the aboliti...For a long time, the new energy automobile market has been maintained locally and cannot fonn a mechanism of the market competition. Since this year, the State Council has repeatedly broken this abuse, and the abolition of the local catalogue of the new energy vehicles is the right remedy. In the implementation of the new energy vehicles, it is very important to advance the basic equipment. Compared with the purchase tax preferences, consumers need to improve the basic equipment such as the charging piles and improve the basic access environment. At present, the actual situation of the production and marketing of the new energy automobile industry in our country is that it develops fast but is not perfect, and its output and sales are large but its quality is not good. Behind the initial scale, it is the reality that the overall technical level is not high. We still haven't mastered many core technologies such as batteries, motors, and the electronic control and so on.展开更多
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ...The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.展开更多
The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy...The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy and dual-integral policies on the performance of new energy vehicle enterprises.This study first theorizes the influential mechanism according to the institutional-based approach and technical innovation theory,and then collects data from listed companies in the new energy vehicle industry from 2016 to 2020.The hypotheses are examined using a two-way fixed-effects model.The findings show that:(1)subsidy policies are can still improve enterprise performance,but not through green technology innovation;(2)the dual-credit policy can improve enterprise performance through green technology innovation;and(3)under current policy conditions,with subsidies declining annually,the interaction effects between the subsidy and dual-integral policies will also decrease.Thus,this study suggests that non-monetary industrial policy,represented by the dual credit policy is a more effective alternative to government subsidies.展开更多
Proton exchange membrane fuel cell has advantages of high energy conversion efficiency, high reliability, no pollution, low operating temperature and rapid start-up. It has become an ideal method of hydrogen energy ut...Proton exchange membrane fuel cell has advantages of high energy conversion efficiency, high reliability, no pollution, low operating temperature and rapid start-up. It has become an ideal method of hydrogen energy utilization and is also ideally suited to be used as the main source of energy for automobiles. Currently, it constitutes a research hot spot in the field of new energy vehicles. Based on the working mechanism of proton exchange membrane fuel cells and empirical models, a terminal voltage dynamic model, an open circuit voltage model and three voltage loss models are established. Matlab/Simulink software is utilized to simulate the model and perform analyses in response to the impact of operating temperature and pressure on its performance. To enhance the efficiency of the proton exchange membrane fuel cell, the operating temperature should be increased in the medium and low current density zones and the operating pressure should be increased in the high current density zone.展开更多
Inspired by the green revolution,new energy vehicles(NEVs)provide a fresh,alternative mode of transportation for Chinese consumers mat reduce their reliance on traditional,gasoline/diesel-based cars.However,despite st...Inspired by the green revolution,new energy vehicles(NEVs)provide a fresh,alternative mode of transportation for Chinese consumers mat reduce their reliance on traditional,gasoline/diesel-based cars.However,despite strong government support for NEVs in China,the level of uptake by consumers remains slow.Using Shanghai as a case study,this article provides a much-needed insight into local consumers'motivations to invest in NEVs through a survey of 100 Shanghai residents.Results indicate that current NEV promotion policies do not have a significant impact on the cognitive trade-off of NEV consumption under the"Integrated Consumer Behavior Model,"mainly due to inconvenient charging facilities,technical concerns regarding battery,higher prices,and wait-and-see attitudes regarding the pilot policy environment.Drawing on experiences from Sweden and New Zealand,this research serves to enhance knowledge on consumer attitudes towards NEVs and assist policy makers in developing more effective green consumption promotion campaigns in the future.展开更多
Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter)...Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.展开更多
Under the background of the rapid development of the Internet, new energy vehicles (NEVs) have ushered in an excellent development opportunity. With the subsidy policy exiting, new energy vehicles are facing unprecede...Under the background of the rapid development of the Internet, new energy vehicles (NEVs) have ushered in an excellent development opportunity. With the subsidy policy exiting, new energy vehicles are facing unprecedented challenges. One purpose of stimulating the NEVs through “Internet plus” initiative is to promote diversification of vehicle energy systems and advance industrial upgrading and transformation. On the premise of “Internet plus”, the paper analyses the obstacles and opportunities of new energy vehicles from four aspects, and proposes a promoting development model which includes management mode and profit mode, and constructs a promoting development framework which is about three stages of new energy vehicles. Finally, from the perspective of the new energy vehicle charging, the paper puts forward some policy advice to promote industrialization and popularization of new energy vehicles in China.展开更多
With the widespread of new energy vehicles, charging piles have alsobeen continuously installed and constructed. In order to make the number of pilesmeet the needs of the development of new energy vehicles, this study...With the widespread of new energy vehicles, charging piles have alsobeen continuously installed and constructed. In order to make the number of pilesmeet the needs of the development of new energy vehicles, this study aims toapply the method of system dynamics and combined with the grey prediction theory to determine the parameters as well as to simulate and analyze the ratio ofvehicles to chargers. Through scenario analysis, it is predicted that by 2030, thisratio will gradually decrease from 1.79 to 1. In order to achieve this ratio as 1:1, itis necessary to speed up the construction of public charging station or privatecharging station. Due to global warming, the attitudes of countries towards fuelvehicles have become increasingly tough. There is huge uncertainty in the growthrate of electric vehicles. Therefore, it is recommended that the construction ofcharging station be deployed in advance to avoid hindering the development ofelectric vehicles in the future.展开更多
Speeding up the promotion of new energy vehicles is an important measure to optimize the energy structure,promote energy conservation and emission reduction,and develop the economy sustainability.The research uses a q...Speeding up the promotion of new energy vehicles is an important measure to optimize the energy structure,promote energy conservation and emission reduction,and develop the economy sustainability.The research uses a questionnaire survey to analyze the residents’willingness to purchase new energy vehicles in Jinan Gty of China,and utilizes the binomial logistic regression model and Global Moran's I to explain the impact of three factors(including responden ts'personal characteristics and subjective cognition,products,and social environment)on the purchase willingness of new energy vehicles.According to the survey,75.12%of the responden ts consider buying new energy vehicles in the future,but only 11.66%of the respondents know new energy vehicles well.It can be seen that the respondents in Jinan City generally have an insufficient understanding of new energy vehicles.It may lead to a decline in residents’trust in new energy vehicles,which will in turm affect their purchase willingness.Based on the survey,we find that women who live far from the city center enjoy high incomes and have a low-carbon awareness,generally exhibit a higher willingness to purchase new energy vehicles.Spatial distribution of the purchase willingness has certain aggregation characteristics,showing a positive spatial correlation pattern.Purchase willingness has a certain positive diffusion effect in space,and areas with a higher purchase willingness have a positive driving effect on their surrounding regions.Spatial distribution of the purchase willingness can be used as one of the breakthroughs in promoting new energy vehicles.In addition,safety,price,after-sales service,and infrastruicture of new energy vehicles are important determinants of people's purchase willingness.Among the types of subsidies,financial subsidy is most effective on the residents’purchase wilingness.Our research provides an impor tant information for the promotion of new energy vehicles in the region.展开更多
New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-...New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.展开更多
The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction w...The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.展开更多
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us...New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.展开更多
Based on the Baa S model,a new energy vehicle supply chain game model composed of battery-swapping operators and vehicle manufacturers was constructed,and the corresponding optimal decisions of the supply chain member...Based on the Baa S model,a new energy vehicle supply chain game model composed of battery-swapping operators and vehicle manufacturers was constructed,and the corresponding optimal decisions of the supply chain members were obtained.The influence of related parameters on the equilibrium results was analyzed,and the Matlab was used for example analysis.The results show that:(1)The increase in the average consumer commuter mileage over the life of the vehicle can promote the increase in the demand for new energy vehicles and the profits of the supply chain members,which has a driving effect on the development of the battery swap industry.(2)Consumer sensitivity coefficient to the price of battery swap has a negative impact on battery-swapping price,new energy vehicle price,market demand for new energy vehicles,and profits of vehicle manufacturers and battery-swapping operators.展开更多
Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem rela...Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.展开更多
The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies i...The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies influence the diffusion of NEVs in China remain unclear,posing challenges for governments to design future strategies.Thus,the primary objective of this paper is to empirically examine the impact of subsidy policy on the diffusion of new energy vehicles and to forecast future development trends using the grey Bass model,a predictive model suited for new product adoption forecasting.Our findings suggest that while the sales of NEVs in China will continue to rise,the growth rate will slow.Key milestones include the first inflection points for new energy vehicles and battery electric vehicles,anticipated in 2025 and 2024 respectively,with peak sales expected in 2028 and 2027.These insights are crucial for manufacturers,enabling them to adjust their production strategies timely and enhance their resilience in the market.展开更多
The realization of a clean automobile society would require electrically-powered propulsion systems in vehicles.In recent years,electric vehicles have attracted considerable attention from the perspective of utilizing...The realization of a clean automobile society would require electrically-powered propulsion systems in vehicles.In recent years,electric vehicles have attracted considerable attention from the perspective of utilizing electricity generated from natural sources,such as solar and wind power.The propulsion method considered in the present investigation differs from the conventional off-board energy scheme in a manner such that pure stoichiometric H2/O2 fuels for fuel cells are generated on-board during vehicle operation.In this method,energy conversion occurs by means of ESI-PSE(electrostatic-induction potential-superposed electrolysis).If a quasi-static process is assumed,the theoretical power requirement to produce pure stoichiometric H2/O2 fuels is only 17%of the total energy required owing to a new method for supplying power to the EC(electrolytic cell).If an ESI-PSE EC is combined with a fuel cell(FC)to form an energy cycle,a HREG(hydrogen redox electric power generator)that uses solid PEMs(polymer electrolyte membranes)for the EC as well as the FC can be realized.According to calculations based on data from the operational conditions of commercially available ECs and FCs,more than 70%of the power delivered from the FC can be extracted for driving a motor constantly while a car is in motion.Because of energy self-sustainability on the HREG side,the power control system should not have any power loss.This propulsion system will realize tough vehicles that can continue running at a top speed at long unlimited cruising range.展开更多
文摘As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.
文摘This article takes 2016-2022 as the inspection period to construct an evaluation index system for the green development level of the new energy vehicle industry.The entropy method and comprehensive index are used to measure the green development level of the new energy vehicle industry in Chongqing,and compared with neighboring provinces such as Yunnan,Guizhou,and Sichuan.Policy recommendations are proposed to promote the development of the new energy vehicle industry in Chongqing City.
文摘New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating excessive exploitation of oil resources,a stance strongly supported by governments.However,new energy vehicles possess certain drawbacks in terms of price and usability compared to traditional counterparts.Therefore,external support is imperative for their development.This paper delineates four main sections:the background of new energy vehicle promotion and application,a comparative analysis of domestic and foreign promotion models,specific promotion suggestions,and future development prospects.By leveraging insights from economic analysis,the optimal promotion model for new energy vehicles is elucidated.
文摘In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.
文摘For a long time, the new energy automobile market has been maintained locally and cannot fonn a mechanism of the market competition. Since this year, the State Council has repeatedly broken this abuse, and the abolition of the local catalogue of the new energy vehicles is the right remedy. In the implementation of the new energy vehicles, it is very important to advance the basic equipment. Compared with the purchase tax preferences, consumers need to improve the basic equipment such as the charging piles and improve the basic access environment. At present, the actual situation of the production and marketing of the new energy automobile industry in our country is that it develops fast but is not perfect, and its output and sales are large but its quality is not good. Behind the initial scale, it is the reality that the overall technical level is not high. We still haven't mastered many core technologies such as batteries, motors, and the electronic control and so on.
基金Supported by National Natural Science Foundation of China (Grant Nos.52222215,52072051)Fundamental Research Funds for the Central Universities in China (Grant No.2023CDJXY-025)Chongqing Municipal Natural Science Foundation of China (Grant No.CSTB2023NSCQ-JQX0003)。
文摘The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.
基金This research is supported by the National Natural Science Foundation of China[Grant number.71801190].
文摘The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy and dual-integral policies on the performance of new energy vehicle enterprises.This study first theorizes the influential mechanism according to the institutional-based approach and technical innovation theory,and then collects data from listed companies in the new energy vehicle industry from 2016 to 2020.The hypotheses are examined using a two-way fixed-effects model.The findings show that:(1)subsidy policies are can still improve enterprise performance,but not through green technology innovation;(2)the dual-credit policy can improve enterprise performance through green technology innovation;and(3)under current policy conditions,with subsidies declining annually,the interaction effects between the subsidy and dual-integral policies will also decrease.Thus,this study suggests that non-monetary industrial policy,represented by the dual credit policy is a more effective alternative to government subsidies.
文摘Proton exchange membrane fuel cell has advantages of high energy conversion efficiency, high reliability, no pollution, low operating temperature and rapid start-up. It has become an ideal method of hydrogen energy utilization and is also ideally suited to be used as the main source of energy for automobiles. Currently, it constitutes a research hot spot in the field of new energy vehicles. Based on the working mechanism of proton exchange membrane fuel cells and empirical models, a terminal voltage dynamic model, an open circuit voltage model and three voltage loss models are established. Matlab/Simulink software is utilized to simulate the model and perform analyses in response to the impact of operating temperature and pressure on its performance. To enhance the efficiency of the proton exchange membrane fuel cell, the operating temperature should be increased in the medium and low current density zones and the operating pressure should be increased in the high current density zone.
文摘Inspired by the green revolution,new energy vehicles(NEVs)provide a fresh,alternative mode of transportation for Chinese consumers mat reduce their reliance on traditional,gasoline/diesel-based cars.However,despite strong government support for NEVs in China,the level of uptake by consumers remains slow.Using Shanghai as a case study,this article provides a much-needed insight into local consumers'motivations to invest in NEVs through a survey of 100 Shanghai residents.Results indicate that current NEV promotion policies do not have a significant impact on the cognitive trade-off of NEV consumption under the"Integrated Consumer Behavior Model,"mainly due to inconvenient charging facilities,technical concerns regarding battery,higher prices,and wait-and-see attitudes regarding the pilot policy environment.Drawing on experiences from Sweden and New Zealand,this research serves to enhance knowledge on consumer attitudes towards NEVs and assist policy makers in developing more effective green consumption promotion campaigns in the future.
基金Funded by National Natural Science Foundation of China(No.51305472)National Natural Science Foundation of Chongqing Science and Technology Committee(No.cstc2014jcyj A60005)Natural Science Foundation of Chongqing Education Committee(No.KJ1400312)
文摘Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.
文摘Under the background of the rapid development of the Internet, new energy vehicles (NEVs) have ushered in an excellent development opportunity. With the subsidy policy exiting, new energy vehicles are facing unprecedented challenges. One purpose of stimulating the NEVs through “Internet plus” initiative is to promote diversification of vehicle energy systems and advance industrial upgrading and transformation. On the premise of “Internet plus”, the paper analyses the obstacles and opportunities of new energy vehicles from four aspects, and proposes a promoting development model which includes management mode and profit mode, and constructs a promoting development framework which is about three stages of new energy vehicles. Finally, from the perspective of the new energy vehicle charging, the paper puts forward some policy advice to promote industrialization and popularization of new energy vehicles in China.
文摘With the widespread of new energy vehicles, charging piles have alsobeen continuously installed and constructed. In order to make the number of pilesmeet the needs of the development of new energy vehicles, this study aims toapply the method of system dynamics and combined with the grey prediction theory to determine the parameters as well as to simulate and analyze the ratio ofvehicles to chargers. Through scenario analysis, it is predicted that by 2030, thisratio will gradually decrease from 1.79 to 1. In order to achieve this ratio as 1:1, itis necessary to speed up the construction of public charging station or privatecharging station. Due to global warming, the attitudes of countries towards fuelvehicles have become increasingly tough. There is huge uncertainty in the growthrate of electric vehicles. Therefore, it is recommended that the construction ofcharging station be deployed in advance to avoid hindering the development ofelectric vehicles in the future.
基金funded by the Provincial College Students'Imnnovative Entrepreneurial Training Plan Program(S201910445052).
文摘Speeding up the promotion of new energy vehicles is an important measure to optimize the energy structure,promote energy conservation and emission reduction,and develop the economy sustainability.The research uses a questionnaire survey to analyze the residents’willingness to purchase new energy vehicles in Jinan Gty of China,and utilizes the binomial logistic regression model and Global Moran's I to explain the impact of three factors(including responden ts'personal characteristics and subjective cognition,products,and social environment)on the purchase willingness of new energy vehicles.According to the survey,75.12%of the responden ts consider buying new energy vehicles in the future,but only 11.66%of the respondents know new energy vehicles well.It can be seen that the respondents in Jinan City generally have an insufficient understanding of new energy vehicles.It may lead to a decline in residents’trust in new energy vehicles,which will in turm affect their purchase willingness.Based on the survey,we find that women who live far from the city center enjoy high incomes and have a low-carbon awareness,generally exhibit a higher willingness to purchase new energy vehicles.Spatial distribution of the purchase willingness has certain aggregation characteristics,showing a positive spatial correlation pattern.Purchase willingness has a certain positive diffusion effect in space,and areas with a higher purchase willingness have a positive driving effect on their surrounding regions.Spatial distribution of the purchase willingness can be used as one of the breakthroughs in promoting new energy vehicles.In addition,safety,price,after-sales service,and infrastruicture of new energy vehicles are important determinants of people's purchase willingness.Among the types of subsidies,financial subsidy is most effective on the residents’purchase wilingness.Our research provides an impor tant information for the promotion of new energy vehicles in the region.
基金supported by the National Key Research and Development Program of China (2019YFB1600800)。
文摘New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.
文摘The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.
文摘New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.
基金supported by the National Natural Science Foundation of China(Grant No.72161003)。
文摘Based on the Baa S model,a new energy vehicle supply chain game model composed of battery-swapping operators and vehicle manufacturers was constructed,and the corresponding optimal decisions of the supply chain members were obtained.The influence of related parameters on the equilibrium results was analyzed,and the Matlab was used for example analysis.The results show that:(1)The increase in the average consumer commuter mileage over the life of the vehicle can promote the increase in the demand for new energy vehicles and the profits of the supply chain members,which has a driving effect on the development of the battery swap industry.(2)Consumer sensitivity coefficient to the price of battery swap has a negative impact on battery-swapping price,new energy vehicle price,market demand for new energy vehicles,and profits of vehicle manufacturers and battery-swapping operators.
基金This work was supported by the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010912)the Key Research and Development Program of Shandong Province(Grant No.2020CXGC010406)。
文摘Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.
基金Supported by the National Social Science Foundation of China(23BTJ021)the National Natural Science Foundation of China(71971194)。
文摘The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies influence the diffusion of NEVs in China remain unclear,posing challenges for governments to design future strategies.Thus,the primary objective of this paper is to empirically examine the impact of subsidy policy on the diffusion of new energy vehicles and to forecast future development trends using the grey Bass model,a predictive model suited for new product adoption forecasting.Our findings suggest that while the sales of NEVs in China will continue to rise,the growth rate will slow.Key milestones include the first inflection points for new energy vehicles and battery electric vehicles,anticipated in 2025 and 2024 respectively,with peak sales expected in 2028 and 2027.These insights are crucial for manufacturers,enabling them to adjust their production strategies timely and enhance their resilience in the market.
文摘The realization of a clean automobile society would require electrically-powered propulsion systems in vehicles.In recent years,electric vehicles have attracted considerable attention from the perspective of utilizing electricity generated from natural sources,such as solar and wind power.The propulsion method considered in the present investigation differs from the conventional off-board energy scheme in a manner such that pure stoichiometric H2/O2 fuels for fuel cells are generated on-board during vehicle operation.In this method,energy conversion occurs by means of ESI-PSE(electrostatic-induction potential-superposed electrolysis).If a quasi-static process is assumed,the theoretical power requirement to produce pure stoichiometric H2/O2 fuels is only 17%of the total energy required owing to a new method for supplying power to the EC(electrolytic cell).If an ESI-PSE EC is combined with a fuel cell(FC)to form an energy cycle,a HREG(hydrogen redox electric power generator)that uses solid PEMs(polymer electrolyte membranes)for the EC as well as the FC can be realized.According to calculations based on data from the operational conditions of commercially available ECs and FCs,more than 70%of the power delivered from the FC can be extracted for driving a motor constantly while a car is in motion.Because of energy self-sustainability on the HREG side,the power control system should not have any power loss.This propulsion system will realize tough vehicles that can continue running at a top speed at long unlimited cruising range.