In order to develop optimal multi-regime traffic stream models, a new method that integrates cluster analysis and B-spline regression is presented. First, for identifying the proper number of regimes, the K-means and ...In order to develop optimal multi-regime traffic stream models, a new method that integrates cluster analysis and B-spline regression is presented. First, for identifying the proper number of regimes, the K-means and the fuzzy c-means methods are applied in cluster analysis to actual traffic data, which suggests that dividing the traffic flow into two or three clusters can best reflect intrinsic patterns of traffic flows. Such information is then taken as guidance in spline regression, thus significantly reducing the computational burden of estimating spline models. Spline regression is used to estimate the locations of knots and the coefficients of the model so that the global error can be minimized. Model analysis results demonstrate that the proposed spline models have better fitting and generalization capability than the conventional models. In addition, the new method is more flexible in terms of data fitting and can provide smoother traffic stream models.展开更多
With the rapid increase of link speed and network throughput in recent years,much more attention has been paid to the work of obtaining statistics over speed traffic streams.It is a challenging problem to identify hea...With the rapid increase of link speed and network throughput in recent years,much more attention has been paid to the work of obtaining statistics over speed traffic streams.It is a challenging problem to identify heavy hitters in high-speed and dynamically changing data streams with less memory and computational overhead with high measurement accuracy.In this paper,we combine Bloom Filter with exponential histogram to query streams in the sliding window so as to identify heavy hitters.This method is called EBF sketches.Our sketch structure allows for effective summarization of streams over time-based sliding windows with guaranteed probabilistic accuracy.It can be employed to address problems such as maintaining frequency statistics and finding heavy hitters.Our experimental results validate our theoretical claims and verifies the effectiveness of our techniques.展开更多
The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper...The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper.By analyzing traffic statistical features and network behavior of P2P streaming,a group of flow characteristics were found,which can make P2P streaming more recognizable among other applications.Attributes from Netflow and those proposed by us are compared in terms of classification accuracy,and so are the results of different sampling rates.It is proved that the unified classification model with the proposed attributes can identify P2P streaming quickly and efficiently in the online system.Even with 1:50 sampling rate,the recognition accuracy can be higher than 94%.Moreover,we have evaluated the CPU resources,storage capacity and time consumption before and after the sampling,it is shown that the classification model after the sampling can significantly reduce the resource requirements with the same recognition accuracy.展开更多
The periodic cell stream is a very important member among the input traffic sources in ATM networks. In this paper, a finite-buffered ATM multiplexer with traffic sources composed of a periodic cell stream, multiple i...The periodic cell stream is a very important member among the input traffic sources in ATM networks. In this paper, a finite-buffered ATM multiplexer with traffic sources composed of a periodic cell stream, multiple i.i.d Bernoulli cell streams and bursty two-state Markov Modulated Bernoulli Process (MMBP) cell streams is exactly analyzed. The probability mass function of queuing delay, the autocorrelation and power spectrum of delay jitter for this periodic cell stream are derived. The analysis is used to expose the behavior of delay jitter for a periodic cell stream through an ATM multiplexer in a bursty traffic environment. The simulation results indicate that the analytical results are accurate.展开更多
针对智能交通管理设备本身缺乏安全监管,传统视频监控延迟高、画质低、稳定性差的问题,提出一种基于FFmpeg的多线程编码视频流传输方案。通过FFmpeg调用h264_nvenc编码器,实现宏块行级的GPU多线程加速,降低编码延迟。使用Visual Studio ...针对智能交通管理设备本身缺乏安全监管,传统视频监控延迟高、画质低、稳定性差的问题,提出一种基于FFmpeg的多线程编码视频流传输方案。通过FFmpeg调用h264_nvenc编码器,实现宏块行级的GPU多线程加速,降低编码延迟。使用Visual Studio 2019和QT15.5开发基于FFmpeg的音视频处理软件,对多路视频流进行封装、推流,并搭建Nginx流媒体服务器进行分发。通过实验表明,该系统整体的传输延迟低于1 s,且拥有良好的率失真特性,监控画面清晰、稳定性高,实现了对交通管理设备实时稳定的安全监控。展开更多
Active anomaly detection queries labels of sampled instances and uses them to incrementally update the detection model,and has been widely adopted in detecting network attacks.However,existing methods cannot achieve d...Active anomaly detection queries labels of sampled instances and uses them to incrementally update the detection model,and has been widely adopted in detecting network attacks.However,existing methods cannot achieve desirable performance on dynamic network traffic streams because(1)their query strategies cannot sample informative instances to make the detection model adapt to the evolving stream and(2)their model updating relies on limited query instances only and fails to leverage the enormous unlabeled instances on streams.To address these issues,we propose an active tree based model,adaptive and augmented active prior-knowledge forest(A3PF),for anomaly detection on network trafic streams.A prior-knowledge forest is constructed using prior knowledge of network attacks to find feature subspaces that better distinguish network anomalies from normal traffic.On one hand,to make the model adapt to the evolving stream,a novel adaptive query strategy is designed to sample informative instances from two aspects:the changes in dynamic data distribution and the uncertainty of anomalies.On the other hand,based on the similarity of instances in the neighborhood,we devise an augmented update method to generate pseudo labels for the unlabeled neighbors of query instances,which enables usage of the enormous unlabeled instances during model updating.Extensive experiments on two benchmarks,CIC-IDS2017 and UNSW-NB15,demonstrate that A3PF achieves significant improvements over previous active methods in terms of the area under the receiver operating characteristic curve(AUC-ROC)(20.9%and 21.5%)and the area under the precision-recall curve(AUC-PR)(44.6%and 64.1%).展开更多
视频流量逐渐在网络中占据主导地位,且视频平台大多对其进行加密传输。虽然加密传输视频可以有效保护用户隐私,但是也增加了监管有害视频传播的难度.现有的加密视频识别方法基于TCP(Transmission Control Protocol)传输协议头部信息和HT...视频流量逐渐在网络中占据主导地位,且视频平台大多对其进行加密传输。虽然加密传输视频可以有效保护用户隐私,但是也增加了监管有害视频传播的难度.现有的加密视频识别方法基于TCP(Transmission Control Protocol)传输协议头部信息和HTTP/1.1(Hypertext Transfer Protocol Version1.1)的传输模式,提取应用层音视频数据单元传输长度序列来实现视频识别.但是随着基于UDP(User Datagram Protocol)的QUIC(Quick UDP Internet Connections)协议及基于QUIC实现的HTTP/3(Hypertext Transfer Protocol Version 3)协议应用于视频传输,已有方法不再适用.HTTP/3协议缺少类似TCP的头部信息,且使用了多路复用机制,并对几乎所有数据进行了加密,此外,视频平台开始使用多片段合并分发技术,这给从网络流量中精准识别加密视频带来了巨大挑战。本文基于HTTP/3协议中的控制信息特征,提出了从HTTP/3加密视频流中提取数据传输特征并进行修正的方法,最大程度复原出应用层音视频长度特征.面向多片段合并分发导致的海量匹配问题,本文基于明文指纹库设计了键值数据库来实现视频的快速识别.实验结果表明,本文提出的基于HTTP/3传输特性的加密视频识别方法能够在包含36万个真实视频指纹的YouTube大规模指纹库中达到接近99%的准确率,100%的精确率以及99.32%的F1得分,对传输过程中加人了填充顿的Facebook平台,在包含28万个真实视频指纹的大规模指纹库中达到95%的准确率、100%的精确率以及96.45%的F1得分,在具有同样特性的Instagram平台中,最高可达到97.57%的F1得分,且本方法在所有指纹库中的平均视频识别时间均低于0.4秒.本文的方法首次解决了使用HTTP/3传输的加密视频在大规模指纹库场景中的识别问题,具有很强的实用性和通用性.展开更多
While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore,...While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore, it is essential to understand and capture the relation between streaming and elastic traffic behavior. In this paper, we focus on developing simple yet effective approximations to capture this relationship. We study, then, an analytical model to evaluate the end-to-end performance of elastic traffic under multi-queuing system. This model is based on the fluid flow approximation. We assume that network architecture gives the head of priority to real time traffic and shares the remaining capacity between the elastic ongoing flows according to a specific weight.展开更多
The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility...The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.展开更多
基金The US National Science Foundation (No.BCS-0527508)
文摘In order to develop optimal multi-regime traffic stream models, a new method that integrates cluster analysis and B-spline regression is presented. First, for identifying the proper number of regimes, the K-means and the fuzzy c-means methods are applied in cluster analysis to actual traffic data, which suggests that dividing the traffic flow into two or three clusters can best reflect intrinsic patterns of traffic flows. Such information is then taken as guidance in spline regression, thus significantly reducing the computational burden of estimating spline models. Spline regression is used to estimate the locations of knots and the coefficients of the model so that the global error can be minimized. Model analysis results demonstrate that the proposed spline models have better fitting and generalization capability than the conventional models. In addition, the new method is more flexible in terms of data fitting and can provide smoother traffic stream models.
基金This study is supported by National key research and development program(2016YFB0801200).
文摘With the rapid increase of link speed and network throughput in recent years,much more attention has been paid to the work of obtaining statistics over speed traffic streams.It is a challenging problem to identify heavy hitters in high-speed and dynamically changing data streams with less memory and computational overhead with high measurement accuracy.In this paper,we combine Bloom Filter with exponential histogram to query streams in the sliding window so as to identify heavy hitters.This method is called EBF sketches.Our sketch structure allows for effective summarization of streams over time-based sliding windows with guaranteed probabilistic accuracy.It can be employed to address problems such as maintaining frequency statistics and finding heavy hitters.Our experimental results validate our theoretical claims and verifies the effectiveness of our techniques.
基金supported by State Key Program of National Natural Science Foundation of China under Grant No.61072061111 Project of China under Grant No.B08004the Fundamental Research Funds for the Central Universities under Grant No.2009RC0122
文摘The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper.By analyzing traffic statistical features and network behavior of P2P streaming,a group of flow characteristics were found,which can make P2P streaming more recognizable among other applications.Attributes from Netflow and those proposed by us are compared in terms of classification accuracy,and so are the results of different sampling rates.It is proved that the unified classification model with the proposed attributes can identify P2P streaming quickly and efficiently in the online system.Even with 1:50 sampling rate,the recognition accuracy can be higher than 94%.Moreover,we have evaluated the CPU resources,storage capacity and time consumption before and after the sampling,it is shown that the classification model after the sampling can significantly reduce the resource requirements with the same recognition accuracy.
文摘The periodic cell stream is a very important member among the input traffic sources in ATM networks. In this paper, a finite-buffered ATM multiplexer with traffic sources composed of a periodic cell stream, multiple i.i.d Bernoulli cell streams and bursty two-state Markov Modulated Bernoulli Process (MMBP) cell streams is exactly analyzed. The probability mass function of queuing delay, the autocorrelation and power spectrum of delay jitter for this periodic cell stream are derived. The analysis is used to expose the behavior of delay jitter for a periodic cell stream through an ATM multiplexer in a bursty traffic environment. The simulation results indicate that the analytical results are accurate.
文摘针对智能交通管理设备本身缺乏安全监管,传统视频监控延迟高、画质低、稳定性差的问题,提出一种基于FFmpeg的多线程编码视频流传输方案。通过FFmpeg调用h264_nvenc编码器,实现宏块行级的GPU多线程加速,降低编码延迟。使用Visual Studio 2019和QT15.5开发基于FFmpeg的音视频处理软件,对多路视频流进行封装、推流,并搭建Nginx流媒体服务器进行分发。通过实验表明,该系统整体的传输延迟低于1 s,且拥有良好的率失真特性,监控画面清晰、稳定性高,实现了对交通管理设备实时稳定的安全监控。
基金Project supported by the National Science and Technology Major Project(No.2022ZD0115302)the National Natural Science Foundation of China(No.61379052)+1 种基金the Science Foundation of Ministry of Education of China(No.2018A02002)the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China(No.14JJ1026)。
文摘Active anomaly detection queries labels of sampled instances and uses them to incrementally update the detection model,and has been widely adopted in detecting network attacks.However,existing methods cannot achieve desirable performance on dynamic network traffic streams because(1)their query strategies cannot sample informative instances to make the detection model adapt to the evolving stream and(2)their model updating relies on limited query instances only and fails to leverage the enormous unlabeled instances on streams.To address these issues,we propose an active tree based model,adaptive and augmented active prior-knowledge forest(A3PF),for anomaly detection on network trafic streams.A prior-knowledge forest is constructed using prior knowledge of network attacks to find feature subspaces that better distinguish network anomalies from normal traffic.On one hand,to make the model adapt to the evolving stream,a novel adaptive query strategy is designed to sample informative instances from two aspects:the changes in dynamic data distribution and the uncertainty of anomalies.On the other hand,based on the similarity of instances in the neighborhood,we devise an augmented update method to generate pseudo labels for the unlabeled neighbors of query instances,which enables usage of the enormous unlabeled instances during model updating.Extensive experiments on two benchmarks,CIC-IDS2017 and UNSW-NB15,demonstrate that A3PF achieves significant improvements over previous active methods in terms of the area under the receiver operating characteristic curve(AUC-ROC)(20.9%and 21.5%)and the area under the precision-recall curve(AUC-PR)(44.6%and 64.1%).
文摘视频流量逐渐在网络中占据主导地位,且视频平台大多对其进行加密传输。虽然加密传输视频可以有效保护用户隐私,但是也增加了监管有害视频传播的难度.现有的加密视频识别方法基于TCP(Transmission Control Protocol)传输协议头部信息和HTTP/1.1(Hypertext Transfer Protocol Version1.1)的传输模式,提取应用层音视频数据单元传输长度序列来实现视频识别.但是随着基于UDP(User Datagram Protocol)的QUIC(Quick UDP Internet Connections)协议及基于QUIC实现的HTTP/3(Hypertext Transfer Protocol Version 3)协议应用于视频传输,已有方法不再适用.HTTP/3协议缺少类似TCP的头部信息,且使用了多路复用机制,并对几乎所有数据进行了加密,此外,视频平台开始使用多片段合并分发技术,这给从网络流量中精准识别加密视频带来了巨大挑战。本文基于HTTP/3协议中的控制信息特征,提出了从HTTP/3加密视频流中提取数据传输特征并进行修正的方法,最大程度复原出应用层音视频长度特征.面向多片段合并分发导致的海量匹配问题,本文基于明文指纹库设计了键值数据库来实现视频的快速识别.实验结果表明,本文提出的基于HTTP/3传输特性的加密视频识别方法能够在包含36万个真实视频指纹的YouTube大规模指纹库中达到接近99%的准确率,100%的精确率以及99.32%的F1得分,对传输过程中加人了填充顿的Facebook平台,在包含28万个真实视频指纹的大规模指纹库中达到95%的准确率、100%的精确率以及96.45%的F1得分,在具有同样特性的Instagram平台中,最高可达到97.57%的F1得分,且本方法在所有指纹库中的平均视频识别时间均低于0.4秒.本文的方法首次解决了使用HTTP/3传输的加密视频在大规模指纹库场景中的识别问题,具有很强的实用性和通用性.
文摘While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore, it is essential to understand and capture the relation between streaming and elastic traffic behavior. In this paper, we focus on developing simple yet effective approximations to capture this relationship. We study, then, an analytical model to evaluate the end-to-end performance of elastic traffic under multi-queuing system. This model is based on the fluid flow approximation. We assume that network architecture gives the head of priority to real time traffic and shares the remaining capacity between the elastic ongoing flows according to a specific weight.
基金partly supported by NSFC under grant No.61371191 and No.61472389
文摘The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.