A cellular automaton (CA) model is proposed in this paper to analyze a bridge traffic bottleneck. The simulation results with this model show that there are several phase transitions in the traffic average density, ...A cellular automaton (CA) model is proposed in this paper to analyze a bridge traffic bottleneck. The simulation results with this model show that there are several phase transitions in the traffic average density, velocity and flow for each lane under a periodic boundary condition. An unstable phase in the traffic average density and velocity for the upstream and downstream lanes of the bridge is shown in a range of initial traffic densities. The critical points of the phase transitions and the phenomenon of the unstable phase found in the simulation are also explained with the mean-field theory.展开更多
In urban transportation network, traffic congestion is likely to occur at traffic bottlenecks. The signal timing at intersections together with static properties of left-turn and straight-through lanes of roads are tw...In urban transportation network, traffic congestion is likely to occur at traffic bottlenecks. The signal timing at intersections together with static properties of left-turn and straight-through lanes of roads are two significant factors causing traffic bottlenecks. A discrete-time model of traffic bottleneck is hence developed to analyze these two factors, and a bottleneck indicator is introduced to estimate the comprehensive bottleneck degree of individual road in regional transportation networks universally, the identification approaches are presented to identify traffic bottlenecks, bottleneck-free roads, and bottle- neck-prone roads. Based on above work, the optimization method applies ant colony algorithm with ef- fective green time as decision variables to find out an optimal coordinated signal timing plan for a re- gional network. In addition, a real experimental transportation network is chosen to verify the valida- tion of bottleneck identification. The bottleneck identification approaches can explain the features of oc- currence and dissipation of traffic congestion in a certain extent, and the bottleneck optimization meth- od provides a new way to coordinate signal timing at intersections to mitigate traffic congestion.展开更多
In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to rep...In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to reproduce the vehicular lane changing behavior. Using this model, we derive the fundamental current-density diagrams for the traffic flow with the effect of moving bottleneck. Moreover, typical time-space diagram for a two-lane highway shows the formation and dissipation of a moving bottleneck. Results demonstrate that the effect of moving bottleneck enlarges with the increase of traffic density, but the effect can be reduced by increasing the maximum velocity of heavy truck. The effects of multiple moving bottlenecks under different conditions are investigated. The effect becomes more remarkable when the coupling effect of multiple moving bottlenecks occurs.展开更多
The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is dis...The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.展开更多
This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulat...This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability βcan be chosen.展开更多
Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Work zone impacts ...Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Work zone impacts on traffic operations are magnified when project durations are extended. Conventionally, work zone traffic control plans are developed to address work zone impacts. This study evaluated various merge control strategies at interstate work zones peak and off-peak traffic conditions and summarized related impacts. A comprehensive microscopic simulation model was developed in full consideration of driver/vehicle behavior at work zones. The analysis of simulation results revealed that merge control strategies, when implemented during peak and off-peak conditions, can preserve the level of service and provide favorable mobility, safety, and environmental impacts. In addition, results indicate that transportation agencies’ practice of scheduling work zone activities during the off-peak may not be the most optimum approach. Overall, the findings of this study highlight the need for evaluation of work zone scheduling practices in full consideration of agency, user, and project costs.展开更多
Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Conventionally, bo...Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Conventionally, bottleneck merge control plans are developed to address bottlenecks impacts. However, there is a need to better understand the various merge control options and their potential impacts on traffic operations and safety. This study reviewed available options and current practices of bottleneck merge control strategies at work zones, and summarized transportation agencies’ considerations to mitigate adverse impacts. An extensive literature review was performed and a questionnaire survey was developed and used to gather relevant information. Input was solicited from all US State Departments of Transportation. Responses from 27 States revealed that transportation agencies currently rely on experience when selecting a bottleneck merge control strategy and often do not consider influence on construction activities. Thus, a gap was identified between bottleneck merge control and construction plans. Another gap was identified regarding the lack of formal criteria or guidelines for selecting a bottleneck merge control strategy. These gaps need to be addressed through investigating the influence of bottleneck merge control strategies on construction activities, and the development of formal criteria for effective selection of such strategies.展开更多
基金The project supported by the National Natural Science Foundation of China(70371067 and 10347001)the Key Project of Chinese Ministry of Education(02115)and the New Century Talent Plan of Guangxi Province in China(2001204).
文摘A cellular automaton (CA) model is proposed in this paper to analyze a bridge traffic bottleneck. The simulation results with this model show that there are several phase transitions in the traffic average density, velocity and flow for each lane under a periodic boundary condition. An unstable phase in the traffic average density and velocity for the upstream and downstream lanes of the bridge is shown in a range of initial traffic densities. The critical points of the phase transitions and the phenomenon of the unstable phase found in the simulation are also explained with the mean-field theory.
基金partially supported by Central College Special Funding ( No. CHD2011JC068 , 0009-2014G2240007 )the national scholarship fund
文摘In urban transportation network, traffic congestion is likely to occur at traffic bottlenecks. The signal timing at intersections together with static properties of left-turn and straight-through lanes of roads are two significant factors causing traffic bottlenecks. A discrete-time model of traffic bottleneck is hence developed to analyze these two factors, and a bottleneck indicator is introduced to estimate the comprehensive bottleneck degree of individual road in regional transportation networks universally, the identification approaches are presented to identify traffic bottlenecks, bottleneck-free roads, and bottle- neck-prone roads. Based on above work, the optimization method applies ant colony algorithm with ef- fective green time as decision variables to find out an optimal coordinated signal timing plan for a re- gional network. In addition, a real experimental transportation network is chosen to verify the valida- tion of bottleneck identification. The bottleneck identification approaches can explain the features of oc- currence and dissipation of traffic congestion in a certain extent, and the bottleneck optimization meth- od provides a new way to coordinate signal timing at intersections to mitigate traffic congestion.
基金Project supported by the National Natural Science Foundation of China (Grant No.11102165)the Natural Science Basis Research Plan in Shaanxi Province,China (Grant No.2012JM1001)the Foundation for Fundamental Research of Northwestern Polytechnical University,China (Grant No.NPU-FFR-JC201254)
文摘In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to reproduce the vehicular lane changing behavior. Using this model, we derive the fundamental current-density diagrams for the traffic flow with the effect of moving bottleneck. Moreover, typical time-space diagram for a two-lane highway shows the formation and dissipation of a moving bottleneck. Results demonstrate that the effect of moving bottleneck enlarges with the increase of traffic density, but the effect can be reduced by increasing the maximum velocity of heavy truck. The effects of multiple moving bottlenecks under different conditions are investigated. The effect becomes more remarkable when the coupling effect of multiple moving bottlenecks occurs.
基金Supported by the National Basic Research Program of China under Grant No.2006CB705500the National Natural Science Foundation of China under Grant Nos.70631001,70701004,and 71071012
文摘The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10562001,10762005 and 10962002)
文摘This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability βcan be chosen.
文摘Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Work zone impacts on traffic operations are magnified when project durations are extended. Conventionally, work zone traffic control plans are developed to address work zone impacts. This study evaluated various merge control strategies at interstate work zones peak and off-peak traffic conditions and summarized related impacts. A comprehensive microscopic simulation model was developed in full consideration of driver/vehicle behavior at work zones. The analysis of simulation results revealed that merge control strategies, when implemented during peak and off-peak conditions, can preserve the level of service and provide favorable mobility, safety, and environmental impacts. In addition, results indicate that transportation agencies’ practice of scheduling work zone activities during the off-peak may not be the most optimum approach. Overall, the findings of this study highlight the need for evaluation of work zone scheduling practices in full consideration of agency, user, and project costs.
文摘Maintenance and rehabilitation projects of interstate facilities typically mandate lane closures. Lane closures require merging maneuvers that often result in reduced speeds and traffic bottlenecks. Conventionally, bottleneck merge control plans are developed to address bottlenecks impacts. However, there is a need to better understand the various merge control options and their potential impacts on traffic operations and safety. This study reviewed available options and current practices of bottleneck merge control strategies at work zones, and summarized transportation agencies’ considerations to mitigate adverse impacts. An extensive literature review was performed and a questionnaire survey was developed and used to gather relevant information. Input was solicited from all US State Departments of Transportation. Responses from 27 States revealed that transportation agencies currently rely on experience when selecting a bottleneck merge control strategy and often do not consider influence on construction activities. Thus, a gap was identified between bottleneck merge control and construction plans. Another gap was identified regarding the lack of formal criteria or guidelines for selecting a bottleneck merge control strategy. These gaps need to be addressed through investigating the influence of bottleneck merge control strategies on construction activities, and the development of formal criteria for effective selection of such strategies.