Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce...Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.展开更多
In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which prov...In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which provides a non-linear second-order parabolic partial differential equation. The analytical solution of the diffusion-type traffic flow model is very complicated to approximate the initial density of the Cauchy problem as a function of x from given data and it may cause a huge error. For the complexity of the analytical solution, the numerical solution is performed by implementing an explicit upwind, explicitly centered, and second-order Lax-Wendroff scheme for the numerical solution. From the comparison of relative error among these three schemes, it is observed that Lax-Wendroff scheme gives less error than the explicit upwind and explicit centered difference scheme. The numerical, analytical analysis and comparative result discussion bring out the fact that the Lax-Wendroff scheme with exponential velocity-density relation of diffusion type traffic flow model is suitable for the congested area and shows a better fit in traffic-congested regions.展开更多
The boundary-layer method is used to study a wide moving jam to a class of higher-order viscous models. The equations for characteristic parameters are derived to determine the asymptotic solution. The sufficient and ...The boundary-layer method is used to study a wide moving jam to a class of higher-order viscous models. The equations for characteristic parameters are derived to determine the asymptotic solution. The sufficient and essential conditions for the wide moving jam formation are discussed in detail, respectively, and then used to prove or disprove the existence of the wide moving jam solutions to many well-known higher-order models. It is shown that the numerical results agree with the analytical results.展开更多
This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the appr...This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.展开更多
In this paper, the viscous continuum traffic flow model for a single lane is extended to the traffic flow for two-lane freeways. The proposed model is a higher-order continuum model considering the coupling and lane c...In this paper, the viscous continuum traffic flow model for a single lane is extended to the traffic flow for two-lane freeways. The proposed model is a higher-order continuum model considering the coupling and lane changing effects of the vehicles on two adjacent lanes. It results from integrating the Taylor series expansion of the viscous continuum traffic flow model proposed by Ge (2006 Physiea A 371 667) into the multi-lane model presented by Daganzo (1997 Transpn. Res. B 31 83). Our proposed model may be used to describe non-anisotropic behaviour because of lane changing in multi-lane traffic. A linear stability analysis is given and the neutral stability condition is obtained. Also, issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are investigated through a simulation experiment. The simulation results show that the proposed model is capable of explaining some particular traffic phenomena commonly observable in real world traffic flow.展开更多
By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability ...By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.展开更多
In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the init...In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the initial data consist of three pieces of constant states. Furthermore, it can be found that the Riemann solutions are stable with respect to such small perturbations of the initial data in this particular situation by investigating the limits of the solutions as the perturbed parameter ε goes to zero.展开更多
In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner micro-scopic structure of synchronized traffic flow. The analysis focuses on the formation and dissol...In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner micro-scopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in pla- toons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model.展开更多
In this paper, we present a new macro model for traffic flow on a highway with ramps based on the existing models. We use the new model to study the effects of on-off-ramp on the main road traffic during the morning r...In this paper, we present a new macro model for traffic flow on a highway with ramps based on the existing models. We use the new model to study the effects of on-off-ramp on the main road traffic during the morning rush period and the evening rush period. Numerical tests show that, during the two rush periods, these effects are often different and related to the status of the main road traffic. If the main road traffic flow is uniform, then ramps always produce stop-and-go traffic when the main road density is between two critical values, and ramps have little effect on the main road traffic when the main road density is less than the smaller critical value or greater than the larger critical value. If a small perturbation appears on the main road, ramp may lead to stop-and-go traffic, or relieve or even eliminate the stop-and-go traffic, under different circumstances. These results are consistent with real traffic, which shows that the new model is reasonable.展开更多
This paper proposes and validates a modified cellular automata model for determining interaction rate (i.e. number of car-following/overtaking instances) using traffic flow data measured in the field. The proposed m...This paper proposes and validates a modified cellular automata model for determining interaction rate (i.e. number of car-following/overtaking instances) using traffic flow data measured in the field. The proposed model considers lateral position preference by each vehicle type and introduces a position preference parameter fl in the model which facilitates gradual drifting towards preferred position on road, even if the gap in front is sufficient. Additionally, the model also improves upon the conven- tional model by calculating safe front and back gap dynamically based on speed and deceleration properties of leader and follower vehicles. Sensitivity analysis was carried out to determine the effect of β on vehicular interac- tions and the model was calibrated and validated using interaction rates observed in the field. Paired tests were conducted to determine the determining interaction rates validity of the model in Results of the simulations show that there is a parabolic relationship between area occupancy and interaction rate of different vehicle types. The model performed satisfactorily as the simulated interaction rate between different vehicle types were found to be statistically similar to those observed in field. Also, as expected, the interaction rate between light motor vehicles (LMVs) and heavy motor vehicles (HMVs) were found to be higher than that between LMVs and three wheelers because LMVs and HMVs share the same lane. This could not be done using conventional CA models as lateral movement rules were dictated by only speeds and gaps. So, in conventional models, the vehicles would end up in positions which are not realistic. The position preference parameter introduced in this model motivates vehicles to stay in their preferred positions. This study demonstrates the use of interaction rate as a measure to validate micro- scopic traffic flow models.展开更多
A traveling wave solution to the Aw-Rascle traffic flow model that includes the relaxation and diffusion terms is investigated. The model can be approximated by the well-known Kortweg-de Vries (KdV) equation. A nume...A traveling wave solution to the Aw-Rascle traffic flow model that includes the relaxation and diffusion terms is investigated. The model can be approximated by the well-known Kortweg-de Vries (KdV) equation. A numerical simulation is conducted by the first-order accurate Lax-Friedrichs scheme, which is known for its ability to capture the entropy solution to hyperbolic conservation laws. Periodic boundary conditions are applied to simulate a lengthy propagation, where the profile of the derived KdV solution is taken as the initial condition to observe the change of the profile. The simulation shows good agreement between the approximated KdV solution and the numerical solution.展开更多
This study sheds light on higher order macroscopic traffic flow modeling on road networks, thanks to the generic second order models (GSOM family) which embeds a myriad of traffic models. It has been demonstrated th...This study sheds light on higher order macroscopic traffic flow modeling on road networks, thanks to the generic second order models (GSOM family) which embeds a myriad of traffic models. It has been demonstrated that such higher order models are easily solved in Lagrangian coordinates which are compatible with both microscopic and macroscopic descriptions. The generalized GSOM model is reformulated in the Lagrangian coordinate system to develop a more efficient numerical method. The difficulty in applying this approach on networks basically resides in dealing with node dynamics. Traffic flow characteristics at node are different from that on homogeneous links. Different geometry features can lead to different critical research issues. For instance, discontinuity in traffic stream can be an important issue for traffic signal operations, while capacity drop may be crucial for lane-merges. The current paper aims to establish and analyze a new adapted node model for macroscopic traffic flow models by applying upstream and downstream boundary conditions on the Lagrangian coordinates in order to perform simulations on networks of roads, and accompanying numerical method. The internal node dynamics between upstream and downstream links are taken into account of the node model. Therefore, a numerical example is provided to underscore the efficiency of this approach. Simulations show that the discretized node model yields accurate results. Additional kinematic waves and contact discontinuities are induced by the variation of the driver attribute.展开更多
This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequenc...This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.展开更多
Developed in this paper is a traffic flow model parametrised to describe abnormal traffic behaviour.In large traffic networks,the immediate detection and categorisation of traffic incidents/accidents is of capital imp...Developed in this paper is a traffic flow model parametrised to describe abnormal traffic behaviour.In large traffic networks,the immediate detection and categorisation of traffic incidents/accidents is of capital importance to avoid breakdowns,further accidents.First,this claims for traffic flow models capable to capture abnormal traffic condition like accidents.Second,by means of proper real-time estimation technique,observing accident related parameters,one may even categorize the severity of accidents.Hence,in this paper,we suggest to modify the nominal Aw-Rascle(AR)traffic model by a proper incident related parametrisation.The proposed Incident Traffic Flow(ITF)model is defined by introducing the incident parameters modifying the anticipation and the dynamic speed relaxation terms in the speed equation of the AR model.These modifications are proven to have physical meaning.Furthermore,the characteristic properties of the ITF model is discussed in the paper.A multi stage numerical scheme is suggested to discretise in space and time the resulting non-homogeneous system of PDEs.The resulting systems of ODE is then combined with receding horizon estimation methods to reconstruct the incident parameters.Finally,the viability of the suggested incident parametrisation is validated in a simulation environment.展开更多
Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based...Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based on this microscopic model, a new macroscopic model was deduced by the relevance relation of microscopic and macroscopic scale parameters for the two-lane traffic flow. Terms related to lane change are added into the continuity equations and velocity dynamic equations to investigate the lane change rate. Numerical results verify that the proposed model can be efficiently used to reflect the effect of the probability of traffic interruption on the shock, rarefaction wave and lane change behaviour on two-lane freeways. The model has also been applied in reproducing some complex traffic phenomena caused by traffic accident interruption.展开更多
An improved multiple car-following model is proposed by considering the arbitrary number of preceding cars, which includes both the headway and the velocity difference of multiple preceding cars. The stability conditi...An improved multiple car-following model is proposed by considering the arbitrary number of preceding cars, which includes both the headway and the velocity difference of multiple preceding cars. The stability condition of the extended model is obtained by using the linear stability theory. The modified Korteweg-de Vries equation is derived to describe the traffic behaviour near the critical point by applying the nonlinear analysis. Traffic flow can be also divided into three regions: stable metastable and unstable regions. Numerical simulation is in accordance with the analytical result for the model. And numerical simulation shows that the stabilisation of traffic is increasing by considering the information of more leading cars and there is unavoidable effect on traffic flow from the multiple leading cars information.展开更多
On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability...On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability condition of the model is obtained by using the linear stability theory. Through nonlinear analysis, a modified Korteweg-de Vries equation is constructed and solved. The traffic jam can thus be described by the klnk-antikink soliton solution for the mKdV equation. The improvement of this new model over the previous ones lies in the fact that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, numerical simulation of traffic dynamics shows that the proposed model can avoid the disadvantage of negative velocity that occurs at small sensitivity coefficients λ in the FVD model by adjusting the information on the multiple leading vehicles. No collision occurs and no unrealistic deceleration appears in the improved model.展开更多
This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and opti...This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and optimized and the optimal scheme make the average stop frequency be reduced by 31.8% and average stop time be reduced by 27.7%.展开更多
Traffic modeling is a key step in several intelligent transportation systems(ITS) applications. This paper regards the traffic modeling through the enhancement of the cell transmission model. It considers the traffi...Traffic modeling is a key step in several intelligent transportation systems(ITS) applications. This paper regards the traffic modeling through the enhancement of the cell transmission model. It considers the traffic flow as a hybrid dynamic system and proposes a piecewise switched linear traffic model. The latter allows an accurate modeling of the traffic flow in a given section by considering its geometry. On the other hand, the piecewise switched linear traffic model handles more than one congestion wave and has the advantage to be modular. The measurements at upstream and downstream boundaries are also used in this model in order to decouple the traffic flow dynamics of successive road portions. Finally, real magnetic sensor data, provided by the performance measurement system on a portion of the Californian SR60-E highway are used to validate the proposed model.展开更多
Traffic flows controlled by traffic light strategies were investigated via a cellular automaton model with anticipation, which is suitable for describing urban traffic. Three kinds of strategies, i. e., synchronized, ...Traffic flows controlled by traffic light strategies were investigated via a cellular automaton model with anticipation, which is suitable for describing urban traffic. Three kinds of strategies, i. e., synchronized, green-wave and random switching lights, were designed, simulated and compared with each other. It is shown that the green-wave strategy is only valid at lower density and there is not an effective way with the three strategies to improve the efficiency of traffic flow at high density.展开更多
基金The Science and Technology Research and Development Program Project of China Railway Group Ltd provided funding for this study(Project Nos.2020-Special-02 and 2021Special-08)。
文摘Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.
文摘In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which provides a non-linear second-order parabolic partial differential equation. The analytical solution of the diffusion-type traffic flow model is very complicated to approximate the initial density of the Cauchy problem as a function of x from given data and it may cause a huge error. For the complexity of the analytical solution, the numerical solution is performed by implementing an explicit upwind, explicitly centered, and second-order Lax-Wendroff scheme for the numerical solution. From the comparison of relative error among these three schemes, it is observed that Lax-Wendroff scheme gives less error than the explicit upwind and explicit centered difference scheme. The numerical, analytical analysis and comparative result discussion bring out the fact that the Lax-Wendroff scheme with exponential velocity-density relation of diffusion type traffic flow model is suitable for the congested area and shows a better fit in traffic-congested regions.
基金Project supported by the National Natural Science Foundation of China(No.11602128)the Natural Science Foundation of Fujian Province of China(No.2016J01679)
文摘The boundary-layer method is used to study a wide moving jam to a class of higher-order viscous models. The equations for characteristic parameters are derived to determine the asymptotic solution. The sufficient and essential conditions for the wide moving jam formation are discussed in detail, respectively, and then used to prove or disprove the existence of the wide moving jam solutions to many well-known higher-order models. It is shown that the numerical results agree with the analytical results.
基金supported by the National Natural Science Foundation of China(Nos.11072141 and11272199)the National Basic Research Program of China(No.2012CB725404)+2 种基金the Shanghai Program for Innovative Research Team in Universitiesthe Research Grants Council of the Hong KongSpecial Administrative Region,China(No.HKU7184/10E)the National Research Foundationof Korea(MEST)(No.NRF-2010-0029446)
文摘This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.
基金supported by the National High Technoloy Research and Development Program of China (Grant No 511-0910-1031)the National "10th Five-year" Science and Technique Important Program of China (Grant No 2002BA404A07)
文摘In this paper, the viscous continuum traffic flow model for a single lane is extended to the traffic flow for two-lane freeways. The proposed model is a higher-order continuum model considering the coupling and lane changing effects of the vehicles on two adjacent lanes. It results from integrating the Taylor series expansion of the viscous continuum traffic flow model proposed by Ge (2006 Physiea A 371 667) into the multi-lane model presented by Daganzo (1997 Transpn. Res. B 31 83). Our proposed model may be used to describe non-anisotropic behaviour because of lane changing in multi-lane traffic. A linear stability analysis is given and the neutral stability condition is obtained. Also, issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are investigated through a simulation experiment. The simulation results show that the proposed model is capable of explaining some particular traffic phenomena commonly observable in real world traffic flow.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. CDJZR11170002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090191110022)
文摘By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.
基金Sponsored by National Natural Science Foundation of China (10901077)China Postdoctoral Science Foundation (201003504+1 种基金 20090451089)Shandong Provincial Doctoral Foundation (BS2010SF006)
文摘In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the initial data consist of three pieces of constant states. Furthermore, it can be found that the Riemann solutions are stable with respect to such small perturbations of the initial data in this particular situation by investigating the limits of the solutions as the perturbed parameter ε goes to zero.
基金Project supported by the DGAPA,UNAM(Grant No.IN104913)
文摘In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner micro-scopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in pla- toons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model.
基金supported by National Natural Science Foundation of China under Grant Nos. 70701002 and 70521001the State Key Basic Research Program of China under Grant No. 2006CB705503the Research Grants Council of the Hong Kong Special Administrative Region under Grant No. HKU7187/05E
文摘In this paper, we present a new macro model for traffic flow on a highway with ramps based on the existing models. We use the new model to study the effects of on-off-ramp on the main road traffic during the morning rush period and the evening rush period. Numerical tests show that, during the two rush periods, these effects are often different and related to the status of the main road traffic. If the main road traffic flow is uniform, then ramps always produce stop-and-go traffic when the main road density is between two critical values, and ramps have little effect on the main road traffic when the main road density is less than the smaller critical value or greater than the larger critical value. If a small perturbation appears on the main road, ramp may lead to stop-and-go traffic, or relieve or even eliminate the stop-and-go traffic, under different circumstances. These results are consistent with real traffic, which shows that the new model is reasonable.
文摘This paper proposes and validates a modified cellular automata model for determining interaction rate (i.e. number of car-following/overtaking instances) using traffic flow data measured in the field. The proposed model considers lateral position preference by each vehicle type and introduces a position preference parameter fl in the model which facilitates gradual drifting towards preferred position on road, even if the gap in front is sufficient. Additionally, the model also improves upon the conven- tional model by calculating safe front and back gap dynamically based on speed and deceleration properties of leader and follower vehicles. Sensitivity analysis was carried out to determine the effect of β on vehicular interac- tions and the model was calibrated and validated using interaction rates observed in the field. Paired tests were conducted to determine the determining interaction rates validity of the model in Results of the simulations show that there is a parabolic relationship between area occupancy and interaction rate of different vehicle types. The model performed satisfactorily as the simulated interaction rate between different vehicle types were found to be statistically similar to those observed in field. Also, as expected, the interaction rate between light motor vehicles (LMVs) and heavy motor vehicles (HMVs) were found to be higher than that between LMVs and three wheelers because LMVs and HMVs share the same lane. This could not be done using conventional CA models as lateral movement rules were dictated by only speeds and gaps. So, in conventional models, the vehicles would end up in positions which are not realistic. The position preference parameter introduced in this model motivates vehicles to stay in their preferred positions. This study demonstrates the use of interaction rate as a measure to validate micro- scopic traffic flow models.
基金Project supported by the National Natural Science Foundation of China (Nos. 11072141 and 11272199)the National Basic Research Program of China (No. 2012CB725404)+1 种基金the University Research Committee, HKU SPACE Research FundFaculty of Engineering Top-up Grant of the University of Hong Kong (No. 201007176059)
文摘A traveling wave solution to the Aw-Rascle traffic flow model that includes the relaxation and diffusion terms is investigated. The model can be approximated by the well-known Kortweg-de Vries (KdV) equation. A numerical simulation is conducted by the first-order accurate Lax-Friedrichs scheme, which is known for its ability to capture the entropy solution to hyperbolic conservation laws. Periodic boundary conditions are applied to simulate a lengthy propagation, where the profile of the derived KdV solution is taken as the initial condition to observe the change of the profile. The simulation shows good agreement between the approximated KdV solution and the numerical solution.
文摘This study sheds light on higher order macroscopic traffic flow modeling on road networks, thanks to the generic second order models (GSOM family) which embeds a myriad of traffic models. It has been demonstrated that such higher order models are easily solved in Lagrangian coordinates which are compatible with both microscopic and macroscopic descriptions. The generalized GSOM model is reformulated in the Lagrangian coordinate system to develop a more efficient numerical method. The difficulty in applying this approach on networks basically resides in dealing with node dynamics. Traffic flow characteristics at node are different from that on homogeneous links. Different geometry features can lead to different critical research issues. For instance, discontinuity in traffic stream can be an important issue for traffic signal operations, while capacity drop may be crucial for lane-merges. The current paper aims to establish and analyze a new adapted node model for macroscopic traffic flow models by applying upstream and downstream boundary conditions on the Lagrangian coordinates in order to perform simulations on networks of roads, and accompanying numerical method. The internal node dynamics between upstream and downstream links are taken into account of the node model. Therefore, a numerical example is provided to underscore the efficiency of this approach. Simulations show that the discretized node model yields accurate results. Additional kinematic waves and contact discontinuities are induced by the variation of the driver attribute.
文摘This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.
基金supported and funded by the Transport Area of Advance.
文摘Developed in this paper is a traffic flow model parametrised to describe abnormal traffic behaviour.In large traffic networks,the immediate detection and categorisation of traffic incidents/accidents is of capital importance to avoid breakdowns,further accidents.First,this claims for traffic flow models capable to capture abnormal traffic condition like accidents.Second,by means of proper real-time estimation technique,observing accident related parameters,one may even categorize the severity of accidents.Hence,in this paper,we suggest to modify the nominal Aw-Rascle(AR)traffic model by a proper incident related parametrisation.The proposed Incident Traffic Flow(ITF)model is defined by introducing the incident parameters modifying the anticipation and the dynamic speed relaxation terms in the speed equation of the AR model.These modifications are proven to have physical meaning.Furthermore,the characteristic properties of the ITF model is discussed in the paper.A multi stage numerical scheme is suggested to discretise in space and time the resulting non-homogeneous system of PDEs.The resulting systems of ODE is then combined with receding horizon estimation methods to reconstruct the incident parameters.Finally,the viability of the suggested incident parametrisation is validated in a simulation environment.
基金Project supported by the National High Tech Research and Development Program of China (Grant No. 511-0910-1031)
文摘Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based on this microscopic model, a new macroscopic model was deduced by the relevance relation of microscopic and macroscopic scale parameters for the two-lane traffic flow. Terms related to lane change are added into the continuity equations and velocity dynamic equations to investigate the lane change rate. Numerical results verify that the proposed model can be efficiently used to reflect the effect of the probability of traffic interruption on the shock, rarefaction wave and lane change behaviour on two-lane freeways. The model has also been applied in reproducing some complex traffic phenomena caused by traffic accident interruption.
基金Project supported by the Natural Science Foundation of Hunan Province,China (Grant No. 07JJ6106)the Important Project of Scientific Research Foundation of Hunan University of Arts and Science,China (Grant No. JJZD0902)the Fund of the 11th Five-year Plan for Key Construction Academic Subject of Hunan Province,China (Grant No. 06GXCD02)
文摘An improved multiple car-following model is proposed by considering the arbitrary number of preceding cars, which includes both the headway and the velocity difference of multiple preceding cars. The stability condition of the extended model is obtained by using the linear stability theory. The modified Korteweg-de Vries equation is derived to describe the traffic behaviour near the critical point by applying the nonlinear analysis. Traffic flow can be also divided into three regions: stable metastable and unstable regions. Numerical simulation is in accordance with the analytical result for the model. And numerical simulation shows that the stabilisation of traffic is increasing by considering the information of more leading cars and there is unavoidable effect on traffic flow from the multiple leading cars information.
基金Project supported by the National High Tech Research and Development Program of China (Grant No 511-0910-1031)the National "10th Five-year" Science and Technique Important Program of China (Grant No 2002BA404A07)
文摘On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability condition of the model is obtained by using the linear stability theory. Through nonlinear analysis, a modified Korteweg-de Vries equation is constructed and solved. The traffic jam can thus be described by the klnk-antikink soliton solution for the mKdV equation. The improvement of this new model over the previous ones lies in the fact that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, numerical simulation of traffic dynamics shows that the proposed model can avoid the disadvantage of negative velocity that occurs at small sensitivity coefficients λ in the FVD model by adjusting the information on the multiple leading vehicles. No collision occurs and no unrealistic deceleration appears in the improved model.
文摘This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and optimized and the optimal scheme make the average stop frequency be reduced by 31.8% and average stop time be reduced by 27.7%.
文摘Traffic modeling is a key step in several intelligent transportation systems(ITS) applications. This paper regards the traffic modeling through the enhancement of the cell transmission model. It considers the traffic flow as a hybrid dynamic system and proposes a piecewise switched linear traffic model. The latter allows an accurate modeling of the traffic flow in a given section by considering its geometry. On the other hand, the piecewise switched linear traffic model handles more than one congestion wave and has the advantage to be modular. The measurements at upstream and downstream boundaries are also used in this model in order to decouple the traffic flow dynamics of successive road portions. Finally, real magnetic sensor data, provided by the performance measurement system on a portion of the Californian SR60-E highway are used to validate the proposed model.
基金Project supported by National Natural Science Foundation of China (Grant No. 10532060)
文摘Traffic flows controlled by traffic light strategies were investigated via a cellular automaton model with anticipation, which is suitable for describing urban traffic. Three kinds of strategies, i. e., synchronized, green-wave and random switching lights, were designed, simulated and compared with each other. It is shown that the green-wave strategy is only valid at lower density and there is not an effective way with the three strategies to improve the efficiency of traffic flow at high density.