A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic s...A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic signals.Given this,crash reduction studies often focus on the major signalised intersections.However,there is limited information that links the phasing configuration,degree of saturation and overall cycle time to crashes.While a number of analysis tools are available for assessing the efficiency of intersections,there are very few tools that can assist engineers in assessing the safety effects of intersection upgrades and new intersections.Safety performance functions have been developed to help quantify the safety impact of various traffic signal phasing configurations and level of intersection congestion at low and high-speed traffic signals in New Zealand and Australia.Data from 238 signalised intersection sites in Auckland,Wellington,Christchurch,Hamilton,Dunedin and Melbourne was used to develop crash prediction models for key crash-causing movements at traffic signals.Different variables(road features)effect each crash type.The models indicate that the safety of intersections can be improved by longer cycle times and longer lost inter-green times,especially all-red time,using fully protected right turns and by extending the length of right turn bays.The exception is at intersections with lots of pedestrians where shorter cycle times are preferred as pedestrian crashes increase with longer wait times.A number of factors have a negative impact on safety including,free left turns,more approach lanes,intersection arms operating near or over capacity in peak periods and higher speed limits.展开更多
An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuz...An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level. The control level decides the signal timings in an intersection with a fuzzy logic controller. The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one. Consequently the system performances are improved. A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections. So the AFC combined with the WCC can be applied in a road network for signal timings. Simulations of the AFC on a real traffic scenario have been conducted. Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.展开更多
Current traffic signals in Jordan suffer from severe congestion due to many factors,such as the considerable increase in the number of vehicles and the use of fixed timers,which still control existing traffic signals....Current traffic signals in Jordan suffer from severe congestion due to many factors,such as the considerable increase in the number of vehicles and the use of fixed timers,which still control existing traffic signals.This condition affects travel demand on the streets of Jordan.This study aims to improve an intelligent road traffic management system(IRTMS)derived from the human community-based genetic algorithm(HCBGA)to mitigate traffic signal congestion in Amman,Jordan’s capital city.The parameters considered for IRTMS are total time and waiting time,and fixed timers are still used for control.By contrast,the enhanced system,called enhanced-IRTMS(E-IRTMS),considers additional important parameters,namely,the speed performance index(SPI),speed reduction index(SRI),road congestion index(R i),and congestion period,to enhance IRTMS decision.A significant reduction in congestion period was measured using E-IRTMS,improving by 13% compared with that measured using IRTMS.Meanwhile,the IRTMS result surpasses that of the current traffic signal system by approximately 83%.This finding demonstrates that the E-IRTMS based on HCBGA and with unfixed timers achieves shorter congestion period in terms of SPI,SRI,and R_(i) compared with IRTMS.展开更多
This paper discusses low-cost approaches capable of ranking traffic intersections for the purpose of signal re-timing.We extracted intersections that are comprised of multiple roads,defined by alphanumeric traffic mes...This paper discusses low-cost approaches capable of ranking traffic intersections for the purpose of signal re-timing.We extracted intersections that are comprised of multiple roads,defined by alphanumeric traffic message channel segment codes per international classification standards.Each of these road segments includes a variety of metrics,including congestion,planning time index,and bottleneck ranking information provided by the Regional Integrated Transportation Information System.Our first approach was to use a ranking formula to calculate intersection rankings using a score between 0 and 10 by considering data for different times of the day and different days of the week,weighting weekdays more heavily than weekends and morning and evening commute times more heavily than other times of day.The second method was to utilize unsupervised machine learning algorithms,primarily k-means clustering,to accomplish the intersection ranking task.We first approach this by checking the performance of basic k-means clustering on our data set.We then explore the ranking problem further by utilizing data provided by traffic professionals in the state of Tennessee.This exploration involves using MATLAB to minimize the mean-squared error of intersection rankings to determine the optimum weights in the ranking formula based on a city’s professional data.We then attempted an optimization of our weights via a brute-force search approach to minimize the distance from ranking formula results to the clustering results.All the ranking information was aggregated into an online SQL database hosted by Amazon web services that utilized the PHP scripting language.展开更多
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight...This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.展开更多
Connected vehicle (CV) trajectory data provides practitioners with opportunities to assess traffic signal performance with no investment in detection or communication infrastructure. With over 500 billion trajectory r...Connected vehicle (CV) trajectory data provides practitioners with opportunities to assess traffic signal performance with no investment in detection or communication infrastructure. With over 500 billion trajectory records generated each month in the United States, operations can be evaluated virtually at any of the over 400,000 traffic signals in the nation. The manual intersection mapping required to generate accurate movement-level trajectory-based performance estimations is the most time-consuming aspect of using CV data to evaluate traffic signal operations. Various studies have utilized vehicle location data to update and create maps;however, most proposed mapping techniques focus on the identification of roadway characteristics that facilitate vehicle navigation and not on the scaling of traffic signal performance measures. This paper presents a technique that uses commercial CV trajectory and open-source OpenStreetMap (OSM) data to automatically map intersection centers and approach areas of interest to estimate signal performance. OSM traffic signal tags are processed to obtain intersection centers. CV data is then used to extract intersection geometry characteristics surrounding the intersection. To demonstrate the proposed technique, intersection geometry is mapped at 500 locations from which trajectory-based traffic signal performance measures are estimated. The results are compared to those obtained from manual geometry definitions. Statistical tests found that at a 99% confidence level, upstream-focused performance estimations are strongly correlated between both methodologies. The presented technique will aid agencies in scaling traffic signal assessment as it significantly reduces the amount of manual labor required.展开更多
Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper pre...Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.展开更多
Traffic signal control(TSC)systems are one essential component in intelligent transport systems.However,relevant studies are usually independent of the urban traffic simulation environment,collaborative TSC algorithms...Traffic signal control(TSC)systems are one essential component in intelligent transport systems.However,relevant studies are usually independent of the urban traffic simulation environment,collaborative TSC algorithms and traffic signal communication.In this paper,we propose(1)an integrated and cooperative Internet-of-Things architecture,namely General City Traffic Computing System(GCTCS),which simultaneously leverages an urban traffic simulation environment,TSC algorithms,and traffic signal communication;and(2)a general multi-agent reinforcement learning algorithm,namely General-MARL,considering cooperation and communication between traffic lights for multi-intersection TSC.In experiments,we demonstrate that the integrated and cooperative architecture of GCTCS is much closer to the real-life traffic environment.The General-MARL increases the average movement speed of vehicles in traffic by 23.2%while decreases the network latency by 11.7%.展开更多
Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal c...Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.展开更多
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop...In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.展开更多
Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and t...Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and the critical conditions for oversaturation is established. Then, the basic road is decomposed into a series of one-way links according to its topological characteristics. Based on the decomposition, traffic wave propagation under complex conditions is studied. Three complicated factors are considered to establish the corresponding critical conditions of jam formation, namely, dynamic and insufficient split, channelized section spillover and endogenous traffic flow. The results show that road geometric features, traffic demand structures and signal settings influence the formation and propagation of traffic congestion. These findings can serve as a theoretical basis for future network jam control.展开更多
Delay in signalized intersections may constitute a significant part of bus journey times in urban environment. Providing priority for buses at traffic signals can be an effective measure to reduce this delay. Bus prio...Delay in signalized intersections may constitute a significant part of bus journey times in urban environment. Providing priority for buses at traffic signals can be an effective measure to reduce this delay. Bus priority in Swedish urban traffic signal systems are normally coordinated with fixed time plan selection. Within this framework local traffic actuated signal timing adjustments are applied based on detector inputs aimed to reduce the number of vehicles in the dilemma zone. Active bus priority is also achieved with the aim to display green signal at the arrival of the bus to the stop line. Due to lack of knowledge of traffic performance impacts of these techniques a major research study was undertaken funded by the Swedish Road Administration. The aim was to evaluate the following control strategies using Stockholm as case study: (1) Fixed time coordination (FTC); (2) Fixed time coordination with local signal timing adjustment (FTC-LTA); (3) FTC-LTA with active bus priority (PRIBUSS); (4) Self-optimizing control (SPOT) with active bus priority. The methodologies for the study included field data collection using mobile and stationary techniques, offiine signal timing calculations with TRANSYT, microscopic simulation modeling using the HUTSIM model. The study obtained the following results: (1) Local traffic adjustment with the manual FTC reduced total delay by 1%. (2) Signal timings determined using TRANSYT reduced the average intersection delay by 9% compared to manual signal settings. (3) Local traffic adjustment reduced total delay by a further 5%. (4) Bus travel time was reduced by 11% using PRIBUSS, and 28% using SPOT. (5) Travel time for all vehicles did not increase using PRIBUSS, and was reduced by 6.5% with SPOT. Results of comparing PRIBUSS and SPOT to FTC-LTA were shown to be statistically significant.展开更多
In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation character...In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.展开更多
This study presents a connected vehicles(CVs)-based traffic signal optimization framework for a coordinated arterial corridor.The signal optimization and coordination problem are first formulated in a centralized sche...This study presents a connected vehicles(CVs)-based traffic signal optimization framework for a coordinated arterial corridor.The signal optimization and coordination problem are first formulated in a centralized scheme as a mixed-integer nonlinear program(MINLP).The optimal phase durations and offsets are solved together by minimizing fuel consumption and travel time considering an individual vehicle’s trajectories.Due to the complexity of the model,we decompose the problem into two levels:an intersection level to optimize phase durations using dynamic programming(DP),and a corridor level to optimize the offsets of all intersections.In order to solve the two-level model,a prediction-based solution technique is developed.The proposed models are tested using traffic simulation under various scenarios.Compared with the traditional actuated signal timing and coordination plan,the signal timing plans generated by solving the MINLP and the two-level model can reasonably improve the signal control performance.When considering varies vehicle types under high demand levels,the proposed two-level model reduced the total system cost by 3.8%comparing to baseline actuated plan.MINLP reduced the system cost by 5.9%.It also suggested that coordination scheme was beneficial to corridors with relatively high demand levels.For intersections with major and minor street,coordination conducted for major street had little impacts on the vehicles at the minor street.展开更多
This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimi...This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.展开更多
In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of ...In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of constant values to simulate traffic flow movement, estimate the average delay of the network and search for an optimal traffic signal timing plan. A case study was given to demonstrate that the proposed methodology can capture unique phenomena in oversaturated conditions such as forward wave, spillback and lane entrance blockage. The results show that CTM underestimates travel time by 25% when compared to Simtraffic, while the enhanced CTM underestimates by only 3%. A second case study shows that a dynamic signal timing plan is superior to a fixed signal timing plan in the term of average delay.展开更多
Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these rout...Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>展开更多
In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and cons...The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.展开更多
文摘A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic signals.Given this,crash reduction studies often focus on the major signalised intersections.However,there is limited information that links the phasing configuration,degree of saturation and overall cycle time to crashes.While a number of analysis tools are available for assessing the efficiency of intersections,there are very few tools that can assist engineers in assessing the safety effects of intersection upgrades and new intersections.Safety performance functions have been developed to help quantify the safety impact of various traffic signal phasing configurations and level of intersection congestion at low and high-speed traffic signals in New Zealand and Australia.Data from 238 signalised intersection sites in Auckland,Wellington,Christchurch,Hamilton,Dunedin and Melbourne was used to develop crash prediction models for key crash-causing movements at traffic signals.Different variables(road features)effect each crash type.The models indicate that the safety of intersections can be improved by longer cycle times and longer lost inter-green times,especially all-red time,using fully protected right turns and by extending the length of right turn bays.The exception is at intersections with lots of pedestrians where shorter cycle times are preferred as pedestrian crashes increase with longer wait times.A number of factors have a negative impact on safety including,free left turns,more approach lanes,intersection arms operating near or over capacity in peak periods and higher speed limits.
基金National Natural Science Foundation of China (No.60774023)
文摘An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network. The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level. The control level decides the signal timings in an intersection with a fuzzy logic controller. The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one. Consequently the system performances are improved. A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections. So the AFC combined with the WCC can be applied in a road network for signal timings. Simulations of the AFC on a real traffic scenario have been conducted. Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.
文摘Current traffic signals in Jordan suffer from severe congestion due to many factors,such as the considerable increase in the number of vehicles and the use of fixed timers,which still control existing traffic signals.This condition affects travel demand on the streets of Jordan.This study aims to improve an intelligent road traffic management system(IRTMS)derived from the human community-based genetic algorithm(HCBGA)to mitigate traffic signal congestion in Amman,Jordan’s capital city.The parameters considered for IRTMS are total time and waiting time,and fixed timers are still used for control.By contrast,the enhanced system,called enhanced-IRTMS(E-IRTMS),considers additional important parameters,namely,the speed performance index(SPI),speed reduction index(SRI),road congestion index(R i),and congestion period,to enhance IRTMS decision.A significant reduction in congestion period was measured using E-IRTMS,improving by 13% compared with that measured using IRTMS.Meanwhile,the IRTMS result surpasses that of the current traffic signal system by approximately 83%.This finding demonstrates that the E-IRTMS based on HCBGA and with unfixed timers achieves shorter congestion period in terms of SPI,SRI,and R_(i) compared with IRTMS.
基金the Tennessee Department of Transportation for their support and funding for the duration of the project
文摘This paper discusses low-cost approaches capable of ranking traffic intersections for the purpose of signal re-timing.We extracted intersections that are comprised of multiple roads,defined by alphanumeric traffic message channel segment codes per international classification standards.Each of these road segments includes a variety of metrics,including congestion,planning time index,and bottleneck ranking information provided by the Regional Integrated Transportation Information System.Our first approach was to use a ranking formula to calculate intersection rankings using a score between 0 and 10 by considering data for different times of the day and different days of the week,weighting weekdays more heavily than weekends and morning and evening commute times more heavily than other times of day.The second method was to utilize unsupervised machine learning algorithms,primarily k-means clustering,to accomplish the intersection ranking task.We first approach this by checking the performance of basic k-means clustering on our data set.We then explore the ranking problem further by utilizing data provided by traffic professionals in the state of Tennessee.This exploration involves using MATLAB to minimize the mean-squared error of intersection rankings to determine the optimum weights in the ranking formula based on a city’s professional data.We then attempted an optimization of our weights via a brute-force search approach to minimize the distance from ranking formula results to the clustering results.All the ranking information was aggregated into an online SQL database hosted by Amazon web services that utilized the PHP scripting language.
基金supported by the National Science and Technology Major Project (2021ZD0112702)the National Natural Science Foundation (NNSF)of China (62373100,62233003)the Natural Science Foundation of Jiangsu Province of China (BK20202006)。
文摘This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.
文摘Connected vehicle (CV) trajectory data provides practitioners with opportunities to assess traffic signal performance with no investment in detection or communication infrastructure. With over 500 billion trajectory records generated each month in the United States, operations can be evaluated virtually at any of the over 400,000 traffic signals in the nation. The manual intersection mapping required to generate accurate movement-level trajectory-based performance estimations is the most time-consuming aspect of using CV data to evaluate traffic signal operations. Various studies have utilized vehicle location data to update and create maps;however, most proposed mapping techniques focus on the identification of roadway characteristics that facilitate vehicle navigation and not on the scaling of traffic signal performance measures. This paper presents a technique that uses commercial CV trajectory and open-source OpenStreetMap (OSM) data to automatically map intersection centers and approach areas of interest to estimate signal performance. OSM traffic signal tags are processed to obtain intersection centers. CV data is then used to extract intersection geometry characteristics surrounding the intersection. To demonstrate the proposed technique, intersection geometry is mapped at 500 locations from which trajectory-based traffic signal performance measures are estimated. The results are compared to those obtained from manual geometry definitions. Statistical tests found that at a 99% confidence level, upstream-focused performance estimations are strongly correlated between both methodologies. The presented technique will aid agencies in scaling traffic signal assessment as it significantly reduces the amount of manual labor required.
文摘Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.
基金supported by the National Natural Science Foundation of China(Grant Nos.61673150,11622538).
文摘Traffic signal control(TSC)systems are one essential component in intelligent transport systems.However,relevant studies are usually independent of the urban traffic simulation environment,collaborative TSC algorithms and traffic signal communication.In this paper,we propose(1)an integrated and cooperative Internet-of-Things architecture,namely General City Traffic Computing System(GCTCS),which simultaneously leverages an urban traffic simulation environment,TSC algorithms,and traffic signal communication;and(2)a general multi-agent reinforcement learning algorithm,namely General-MARL,considering cooperation and communication between traffic lights for multi-intersection TSC.In experiments,we demonstrate that the integrated and cooperative architecture of GCTCS is much closer to the real-life traffic environment.The General-MARL increases the average movement speed of vehicles in traffic by 23.2%while decreases the network latency by 11.7%.
基金supported by National Key R&D Program of China(Grant No.2018YFE0204302)National Natural Science Foundation of China(Grant No.52062015,No.61703160)+1 种基金the Talent Research Start-up Fund of Nanjing University of Aeronautics and Astronautics(YAH22019)Jiangsu High Level'Shuang-Chuang'Project.
文摘Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.
基金The National Natural Science Foundation of China(No.51208054)
文摘In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.
基金The National Basic Research Program of China(973 Program)(No.2006CB705505)the Basic Scientific Research Fund of Jilin University(No.200903209)
文摘Traffic wave theory is used to study the critical conditions for traffic jams according to their features. First, the characteristics of traffic wave propagation is analyzed for the simple signal-controlled lane and the critical conditions for oversaturation is established. Then, the basic road is decomposed into a series of one-way links according to its topological characteristics. Based on the decomposition, traffic wave propagation under complex conditions is studied. Three complicated factors are considered to establish the corresponding critical conditions of jam formation, namely, dynamic and insufficient split, channelized section spillover and endogenous traffic flow. The results show that road geometric features, traffic demand structures and signal settings influence the formation and propagation of traffic congestion. These findings can serve as a theoretical basis for future network jam control.
文摘Delay in signalized intersections may constitute a significant part of bus journey times in urban environment. Providing priority for buses at traffic signals can be an effective measure to reduce this delay. Bus priority in Swedish urban traffic signal systems are normally coordinated with fixed time plan selection. Within this framework local traffic actuated signal timing adjustments are applied based on detector inputs aimed to reduce the number of vehicles in the dilemma zone. Active bus priority is also achieved with the aim to display green signal at the arrival of the bus to the stop line. Due to lack of knowledge of traffic performance impacts of these techniques a major research study was undertaken funded by the Swedish Road Administration. The aim was to evaluate the following control strategies using Stockholm as case study: (1) Fixed time coordination (FTC); (2) Fixed time coordination with local signal timing adjustment (FTC-LTA); (3) FTC-LTA with active bus priority (PRIBUSS); (4) Self-optimizing control (SPOT) with active bus priority. The methodologies for the study included field data collection using mobile and stationary techniques, offiine signal timing calculations with TRANSYT, microscopic simulation modeling using the HUTSIM model. The study obtained the following results: (1) Local traffic adjustment with the manual FTC reduced total delay by 1%. (2) Signal timings determined using TRANSYT reduced the average intersection delay by 9% compared to manual signal settings. (3) Local traffic adjustment reduced total delay by a further 5%. (4) Bus travel time was reduced by 11% using PRIBUSS, and 28% using SPOT. (5) Travel time for all vehicles did not increase using PRIBUSS, and was reduced by 6.5% with SPOT. Results of comparing PRIBUSS and SPOT to FTC-LTA were shown to be statistically significant.
基金The National Natural Science Foundation of China(No.60972001)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ_0163)the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1212)
文摘In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.
基金This research is partially supported by the connect cities with smart transportation(C2SMART)Tier 1 University Transportation Center(funded by US Department of Transportation(USDOT))at the New York University via a grant to the University of Washington(69A3551747124).
文摘This study presents a connected vehicles(CVs)-based traffic signal optimization framework for a coordinated arterial corridor.The signal optimization and coordination problem are first formulated in a centralized scheme as a mixed-integer nonlinear program(MINLP).The optimal phase durations and offsets are solved together by minimizing fuel consumption and travel time considering an individual vehicle’s trajectories.Due to the complexity of the model,we decompose the problem into two levels:an intersection level to optimize phase durations using dynamic programming(DP),and a corridor level to optimize the offsets of all intersections.In order to solve the two-level model,a prediction-based solution technique is developed.The proposed models are tested using traffic simulation under various scenarios.Compared with the traditional actuated signal timing and coordination plan,the signal timing plans generated by solving the MINLP and the two-level model can reasonably improve the signal control performance.When considering varies vehicle types under high demand levels,the proposed two-level model reduced the total system cost by 3.8%comparing to baseline actuated plan.MINLP reduced the system cost by 5.9%.It also suggested that coordination scheme was beneficial to corridors with relatively high demand levels.For intersections with major and minor street,coordination conducted for major street had little impacts on the vehicles at the minor street.
基金Supported by the National Natural Science Foundation of China (10671045)
文摘This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.
基金Project(51108343) supported by the National Natural Science Foundation of ChinaProject(06121) supported by University of Transportation Center for Alabama, USA
文摘In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of constant values to simulate traffic flow movement, estimate the average delay of the network and search for an optimal traffic signal timing plan. A case study was given to demonstrate that the proposed methodology can capture unique phenomena in oversaturated conditions such as forward wave, spillback and lane entrance blockage. The results show that CTM underestimates travel time by 25% when compared to Simtraffic, while the enhanced CTM underestimates by only 3%. A second case study shows that a dynamic signal timing plan is superior to a fixed signal timing plan in the term of average delay.
文摘Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.
基金supported by the National Basic Research Program of China(Grand No.2012CB723303)the Beijing Committee of Science and Technology,China(Grand No.Z1211000003120100)
文摘The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.