Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air tr...Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.展开更多
It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration o...It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.展开更多
The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability qua...The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability quantification,which is acceptable for networks carrying complex traffic flows.Complex network traffic is considered as general multi-rate,heterogeneous traffic,where the individual bandwidth demands may aggregate in complex,nonlinear ways.Blocking probability is the chosen measure for survivability analysis.We study an arbitrary topology and some other known topologies for the network.Independent and dependent failure scenarios as well as deterministic and random traffic models are investigated.Finally,we provide survivability evaluation results for different network configurations.The results show that by using about 50%of the link capacity in networks with a relatively high number of links,the blocking probability remains near zero in the case of a limited number of failures.展开更多
Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the opera...Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.展开更多
Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliabl...Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliable method to accurately measure traffic complexity is important. Considering that many factors correlate with traffic complexity in complicated nonlinear ways,researchers have proposed several complexity evaluation methods based on machine learning models which were trained with large samples. However, the high cost of sample collection usually results in limited training set. In this paper, an ensemble learning model is proposed for measuring air traffic complexity within a sector based on small samples. To exploit the classification information within each factor, multiple diverse factor subsets(FSSs) are generated under guidance from factor noise and independence analysis. Then, a base complexity evaluator is built corresponding to each FSS. The final complexity evaluation result is obtained by integrating all results from the base evaluators. Experimental studies using real-world air traffic operation data demonstrate the advantages of our model for small-sample-based traffic complexity evaluation over other stateof-the-art methods.展开更多
In order to quantitatively analyze air traffic operation complexity,multidimensional metrics were selected based on the operational characteristics of traffic flow.The kernel principal component analysis method was ut...In order to quantitatively analyze air traffic operation complexity,multidimensional metrics were selected based on the operational characteristics of traffic flow.The kernel principal component analysis method was utilized to reduce the dimensionality of metrics,therefore to extract crucial information in the metrics.The hierarchical clustering method was used to analyze the complexity of different airspace.Fourteen sectors of Guangzhou Area Control Center were taken as samples.The operation complexity of traffic situation in each sector was calculated based on real flight radar data.Clustering analysis verified the feasibility and rationality of the method,and provided a reference for airspace operation and management.展开更多
Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety.When confronted with complex weather conditions,the controllers should know the weather...Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety.When confronted with complex weather conditions,the controllers should know the weather condition and trend weather,and notify the aircraft under your control zone.The controllers provide the required services to the pilots,help the pilots to avoid the complex weather.In this paper,through different complex weathers under different control command,get the different methods of control.展开更多
基金This work was supported by the Na⁃tional Natural Science Foundation of China(No.61903187)Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20190732)。
文摘Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.
基金supported by the National Natural Science Foundation of China (No. 61573181)the Civil Aviation Joint Fund Key Projects of National Natural Science Foundation of China (No.U1333202)
文摘It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.
文摘The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of survivability.In this paper,we propose a model for survivability quantification,which is acceptable for networks carrying complex traffic flows.Complex network traffic is considered as general multi-rate,heterogeneous traffic,where the individual bandwidth demands may aggregate in complex,nonlinear ways.Blocking probability is the chosen measure for survivability analysis.We study an arbitrary topology and some other known topologies for the network.Independent and dependent failure scenarios as well as deterministic and random traffic models are investigated.Finally,we provide survivability evaluation results for different network configurations.The results show that by using about 50%of the link capacity in networks with a relatively high number of links,the blocking probability remains near zero in the case of a limited number of failures.
基金supported by the National Natural Science Foundation of China (Nos.U1833103, 71801215, U1933103)the Fundamental Research Funds for the Central Universities (No.3122019129)。
文摘Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.
基金co-supported by the State Key Program of National Natural Science Foundation of China (No. 91538204)the National Science Fund for Distinguished Young Scholars (No. 61425014)the National Key Technologies R&D Program of China (No. 2015BAG15B01)
文摘Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliable method to accurately measure traffic complexity is important. Considering that many factors correlate with traffic complexity in complicated nonlinear ways,researchers have proposed several complexity evaluation methods based on machine learning models which were trained with large samples. However, the high cost of sample collection usually results in limited training set. In this paper, an ensemble learning model is proposed for measuring air traffic complexity within a sector based on small samples. To exploit the classification information within each factor, multiple diverse factor subsets(FSSs) are generated under guidance from factor noise and independence analysis. Then, a base complexity evaluator is built corresponding to each FSS. The final complexity evaluation result is obtained by integrating all results from the base evaluators. Experimental studies using real-world air traffic operation data demonstrate the advantages of our model for small-sample-based traffic complexity evaluation over other stateof-the-art methods.
基金co-supported by the National Natural Science Foundation of China(No.61304190)the Fundamental Research Funds for the Central Universities of China(No.NJ20150030)the Youth Science and Technology Innovation Fund(No.NS2014067)
文摘In order to quantitatively analyze air traffic operation complexity,multidimensional metrics were selected based on the operational characteristics of traffic flow.The kernel principal component analysis method was utilized to reduce the dimensionality of metrics,therefore to extract crucial information in the metrics.The hierarchical clustering method was used to analyze the complexity of different airspace.Fourteen sectors of Guangzhou Area Control Center were taken as samples.The operation complexity of traffic situation in each sector was calculated based on real flight radar data.Clustering analysis verified the feasibility and rationality of the method,and provided a reference for airspace operation and management.
文摘Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety.When confronted with complex weather conditions,the controllers should know the weather condition and trend weather,and notify the aircraft under your control zone.The controllers provide the required services to the pilots,help the pilots to avoid the complex weather.In this paper,through different complex weathers under different control command,get the different methods of control.