This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requi...This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requiring more training or resources for incident management. Previous NCHRP reports discussed usage of different factors including incident severity, roadway characteristics, number of lanes involved and time of incident separately for estimating the performance. However, it does not tell us how to incorporate all the factors at the same time. Thus, this study aims to account for multiple factors to ensure fair comparisons. This study used 149,174 crashes from Iowa that occurred from 2018 to 2021. A Tobit regression model was used to find the effect of different variables on roadway clearance time. Variables that cannot be controlled directly by agencies such as crash severity, roadway type, weather conditions, lighting conditions, etc., were included in the analysis as it helps to reduce bias in the ranking procedure. Then clearance time of each crash is normalized into a base condition using the regression coefficients. The normalization makes the process more efficient as the effect of uncontrollable factors has already been mitigated. Finally, the agencies were ranked by their average normalized roadway clearance time. This ranking process allows agencies to track their performance of previous crashes, can be used in identifying low performing agencies that could use additional resources and training, and can be used to identify high performing agencies to recognize for their efforts and performance.展开更多
The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special...The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.展开更多
TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriat...TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriately as a corridor or aerial implementation with proper spacing. Hence in many previous studies, their impact was mainly evaluated in scope of average and 85th percentile speed reduction. This paper presents and appraises the efficiency of calming measures of various types used in the city of Bialystok, Poland in terms of their influence zone. The assessment is based on speed profiles derived from individual test rides conducted with test vehicle equipped with GPS (global positioning system) data logger to obtain vehicle trajectory data. Speed measurements were conducted in vicinity of most commonly installed calming measures such as speed cameras, raised pedestrian crossing, raised intersection, speed bumps and speed cushion. The results reveal great differences within analysed devices and the usefulness of speed profiles in evaluation of their effectiveness. Speed bumps, most frequently used device in practice due to their low cost installation and speed reduction effectiveness, demonstrate lowest usefulness when influence zone is considered.展开更多
According to the distribution characteristics of traffic congestion in time and space, a measure index system of urban traffic congestion is set up based on the spatial and temporal distribution. Based on the analysis...According to the distribution characteristics of traffic congestion in time and space, a measure index system of urban traffic congestion is set up based on the spatial and temporal distribution. Based on the analysis of the main characteristics of traffic congestion and the generation process of traffic congestion, the measure model for urban traffic congestion is constructed by the value function. Moreover, based on the measure values of traffic congestion in urban road networks with defined different levels, a method to prevent and control traffic congestion is designed. The application results confirm that the proposed method is feasible in comprehensive measures for urban traffic congestion and they are consistent with the results of other methods. The measuring results can therefore reflect the actual situation. The comprehensive measure model is scientific and the process is simple, and it has wide application prospects and practical value.展开更多
With the advent of large-scale and high-speed IPv6 network technology, an effective multi-point traffic sampling is becoming a necessity. A distributed multi-point traffic sampling method that provides an accurate and...With the advent of large-scale and high-speed IPv6 network technology, an effective multi-point traffic sampling is becoming a necessity. A distributed multi-point traffic sampling method that provides an accurate and efficient solution to measure IPv6 traffic is proposed. The proposed method is to sample IPv6 traffic based on the analysis of bit randomness of each byte in the packet header. It offers a way to consistently select the same subset of packets at each measurement point, which satisfies the requirement of the distributed multi-point measurement. Finally, using real IPv6 traffic traces, the conclusion that the sampled traffic data have a good uniformity that satisfies the requirement of sampling randomness and can correctly reflect the packet size distribution of full packet trace is proved.展开更多
The objective of traffic accident reconstruction is to recreate the event, which is necessary for analyzing the collision dynamics that is used as evidence in court cases. Traffic accident reconstruction and a demonst...The objective of traffic accident reconstruction is to recreate the event, which is necessary for analyzing the collision dynamics that is used as evidence in court cases. Traffic accident reconstruction and a demonstration of the event require precise data pertaining to scene measurement. However, there are differences between the individual measuring tools and methods related to traffic accident investigation, just as there are differences between the extent of their use and measurement accuracy. The most commonly applied method is the measuring tape, followed by measurements with total stations and laser rangefinders, while photogrammetry is also becoming increasingly important. The advantages and disadvantages of individual tools and methods affect the required number of investigators, portability, measurement range, applicability depending on the amount of light and weather conditions, on the possibility of remote measurement, on data collection time, on the scope, on the option to later process, the collected data and above all on the accuracy of all gathered data. The latter is crucial for proving the guilt or innocence of traffic accident participants at court, as inaccurate data can lead to an unjust sentence. Measurement accuracy using the above mentioned tools and methods also varies depending on which ones are used, as well as on other factors.展开更多
Using the theory and method of unascertained measure, an unascertained measure model and the related confidence rule are established to assess the safety state of ship. Thus, the dangerous factors in the hull system c...Using the theory and method of unascertained measure, an unascertained measure model and the related confidence rule are established to assess the safety state of ship. Thus, the dangerous factors in the hull system can be identified, and the accident possibility, loss, and injury degree can be forcasted. An application result shows that the the proposed method is effective in assessment of the traffic safety of ships, and it is more simple in computation than the fuzzy synthetic evaluation method. The proposed method can provide a scientific basis for realizing shipping transportation security and formulating preventive measures.展开更多
Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volum...Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volume and speed;but they are expensive, difficult to set up, and require periodic maintenance. The moving observer method was proposed in 1954 by Wardrop and Charlesworth to estimate these variables inexpensively. Basically, the observer counts the number of vehicles overtaken, the number of vehicles passed, and the number of vehicles encountered while traveling in the opposite direction. The trip time is reported for both travel directions. Additionally, the length of road segment is measured. These variables are then used in estimating speeds and volumes. In a westbound direction from Interstate Highway 30 (I-30) in the DFW area, this study examined the accuracy and feasibility of this method by comparing it with stationary observer method as the standard method for such counts. The statistical tests were used to test the accuracy. Results show that this method provides accurate volume and speed estimates when compared to the stationary method for the road segment with three lanes per direction, especially when several runs are taken.展开更多
In order to understand how a network is being used or whether it is being abused, an administrator needs to inspect the flow of the traffic and "infers" the intent of the users and applications. So the network traff...In order to understand how a network is being used or whether it is being abused, an administrator needs to inspect the flow of the traffic and "infers" the intent of the users and applications. So the network traffic measurement and analysis are crucial to network monitoring, reliable DDoS detecting and attack source locating as well. In this paper, we discuss the principle of real-time network traffic measurement and analysis through embedding a traffic measurement and analysis engine into IP packet-decoding module, and emphasize the implementation of visualizing the real-time network traffic, which are helpful to network monitoring and network traffic modeling.展开更多
Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper pre...Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.展开更多
The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, C...The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, COP (center of pressure) movement on sitting surface and tracking error in driving simulator task. Drowsy states were predicted by means of the multinomial logistic regression model where behavioral measures and subjective evaluation of drowsiness corresponded to independent variables and a dependent variable, respectively. First, we compared the effectiveness of two methods (correlation coefficient-based method and odds ratio-based method) for determining the order of entering behavioral measures into the prediction model. It was found that the prediction accuracy did not differ between both methods. Second, the prediction accuracy was compared among the numbers of behavioral measures. The prediction accuracy did not differ among four, five and six behavioral measures and it was concluded that entering at least four behavioral measures into the prediction model is enough to achieve higher prediction accuracy. Third, the prediction accuracy was compared between the strongly drowsy and the weakly drowsy groups. The prediction accuracy differed between the two groups and the proposed method was effective under the condition where drowsiness was induced to a larger extent.展开更多
In order to classify the Intemet traffic of different Internet applications more quickly, two open Internet traffic traces, Auckland I1 and UNIBS traffic traces, are employed as study objects. Eight earliest packets w...In order to classify the Intemet traffic of different Internet applications more quickly, two open Internet traffic traces, Auckland I1 and UNIBS traffic traces, are employed as study objects. Eight earliest packets with non-zero flow payload sizes are selected and their payload sizes are used as the early-stage flow features. Such features can be easily and rapidly extracted at the early flow stage, which makes them outstanding. The behavior patterns of different Intemet applications are analyzed by visualizing the early-stage packet size values. Analysis results show that most Internet applications can reflect their own early packet size behavior patterns. Early packet sizes are assumed to carry enough information for effective traffic identification. Three classical machine learning classifiers, classifier, naive Bayesian trees, i. e., the naive Bayesian and the radial basis function neural networks, are used to validate the effectiveness of the proposed assumption. The experimental results show that the early stage packet sizes can be used as features for traffic identification.展开更多
With enormous growth of the number of Internet users and appearance of new applications, characterization of Internet traffic has attracted more and more attention and has become one of the major challenging issues in...With enormous growth of the number of Internet users and appearance of new applications, characterization of Internet traffic has attracted more and more attention and has become one of the major challenging issues in telecommunication network over the past few years. In this paper, we study the network traffic pattern of the aggregate traffic and of specific application traffic, especially the popular applications such as P2P, VoIP that contribute most network traffic. Our study verified that majority Internet backbone traffic is contributed by a small portion of users and a power function can be used to approximate the contribution of each user to the overall traffic. We show that P2P applications are the dominant traffic contributor in current Internet Backbone of China. In addition, we selectively present the traffic pattern of different applications in detail.展开更多
WiFi has become one of the most popular ways to access the Internet.However,in large-scale campus wireless networks,it is challenging for network administrators to provide optimized access quality without knowledge on...WiFi has become one of the most popular ways to access the Internet.However,in large-scale campus wireless networks,it is challenging for network administrators to provide optimized access quality without knowledge on fine-grained traffic characteristics and real network performance.In this paper,we implement PerfMon,a network performance measurement and diagnosis system,which integrates collected multi-source datasets and analysis methods.Based on PerfMon,we first conduct a comprehensive measurement on application-level traffic patterns and behaviors from multiple dimensions in the wireless network of T university(TWLAN),which is one of the largest campus wireless networks.Then we systematically study the application-level network performance.We observe that the application-level traffic behaviors and performance vary greatly across different locations and device types.The performance is far from satisfactory in some cases.To diagnose these problems,we distinguish locations and device types,and further locate the most crucial factors that affect the performance.The results of case studies show that the influential factors can effectively characterize performance changes and explain for performance degradation.展开更多
Traffic classification research has been suffering from a trouble of collecting accurate samples with ground truth.A model named Traffic Labeller(TL) is proposed to solve this problem.TL system captures all user socke...Traffic classification research has been suffering from a trouble of collecting accurate samples with ground truth.A model named Traffic Labeller(TL) is proposed to solve this problem.TL system captures all user socket calls and their corresponding application process information in the user mode on a Windows host.Once a sending data call has been captured,its 5-tuple {source IP,destination IP,source port,destination port and transport layer protocol},associated with its application information,is sent to an intermediate NDIS driver in the kernel mode.Then the intermediate driver writes application type information on TOS field of the IP packets which match the 5-tuple.In this way,each IP packet sent from the Windows host carries their application information.Therefore,traffic samples collected on the network have been labelled with the accurate application information and can be used for training effective traffic classification models.展开更多
Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these rout...Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>展开更多
Congestion on the freeway is more frequent due to several traffic incidents, namely traffic accidents, debris on the road, vehicle breakdown, and collision with guardrails than any other incidents. These, in turn, aff...Congestion on the freeway is more frequent due to several traffic incidents, namely traffic accidents, debris on the road, vehicle breakdown, and collision with guardrails than any other incidents. These, in turn, affect the operational performance of the freeway by increasing queue length, volume, and density. Consequently, effective freeway management strategies can help to minimize these impacts. The study investigates and summarizes existing studies to identify the reasons for and effects of the traffic incidents. Attention is given to the available solutions of the freeway traffic incidents management. The ultimate goal of this study is to identify the gaps which are not yet addressed to improve the operational effectiveness of the freeway. This study was conducted through a comprehensive literature review of existing refereed publications, established standards, and formal guidelines. Literature was sought through the Transport Research International Documentation (TRID) database, IEEE Transactions database, and google scholar search engine. Research focusing on freeway traffic incidents is a growing concern in transportation operations, as transportation network performance depends on it. Due to the advancement of technology, emerging vehicle technologies like connected vehicles have the potential to address these problems affecting the US transportation system and revolutionize mobility in the future. The study can serve as a reference for the researchers that are involved in freeway traffic operations.展开更多
Mashhad, the second largest city in Iran, like many other big cities, is faced with increasing traffic congestion owing to rapidly increasing population and annual pilgrimage. In recent years, Mashhad traffic and tran...Mashhad, the second largest city in Iran, like many other big cities, is faced with increasing traffic congestion owing to rapidly increasing population and annual pilgrimage. In recent years, Mashhad traffic and transportation authorities have been challenged with how to manage the increasing congestion with limited budgets for major roadway construction projects. Mashhad has recognized the need to improve the existing system capacity to get the most out of their cur- rent transportation system infrastructures. Since most of the delay times occur at signalized intersections, using an intelligent control system with proper capabilities to overcome the growing traffic requirements is recommended. Following comprehensive studies carried out with the aim of developing the Mashhad traffic control center, the SCATS adaptive traffic control system was introduced as the selected intelligent control system for integrating signalized intersections. The first intersection was equipped with this system in 2005. This paper describes the results of a field evaluation in which fixed actuated-coordinated signal timings are compared with those dynamically computed by SCATS. The ef- fects of this system on optimizing fuel consumption as well as reducing air pollutants are fully discussed. It is found that SCATS consistently reduced travel times and the average delay per stopped or approaching vehicle. The positive impact of adaptive traffic control systems on fuel consumption and air pollution are also highlighted.展开更多
A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the oper...A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the operator to keep an eye on the network’s or object’s performance in an RF circuit. The purpose of the following research includes analyzing the capabilities of NetFlow analyzer to measure various parts, including filters, mixers, frequency sensitive networks, transistors, and other RF-based instruments. NetFlow Analyzer is a network traffic analyzer that measures the network parameters of electrical networks. Although there are other types of network parameter sets including Y, Z, & H-parameters, these instruments are typically employed to measure S-parameters since transmission & reflection of electrical networks are simple to calculate at high frequencies. These analyzers are widely employed to distinguish between two-port networks, including filters and amplifiers. By allowing the user to view the actual data that is sent over a network, packet by packet, a network analyzer informs you of what is happening there. Also, this research will contain the design model of NetFlow Analyzer that Measurements involving transmission and reflection use. Gain, insertion loss, and transmission coefficient are measured in transmission measurements, whereas return loss, reflection coefficient, impedance, and other variables are measured in reflection measurements. These analyzers’ operational frequencies vary from 1 Hz to 1.5 THz. These analyzers can also be used to examine stability in measurements of open loops, audio components, and ultrasonics.展开更多
The 5G era witnessed the transformation in the transportation civilization,while the connotation of transportation has been extended into the domain of social measurement. The new connotation of transportation con-str...The 5G era witnessed the transformation in the transportation civilization,while the connotation of transportation has been extended into the domain of social measurement. The new connotation of transportation con-structed under the guidance of traffic organization measurement model can be considered from the perspective of or-ganizational measurement. Based on the above hypothesis,this research re - examined the definition of transportation based on the literature review,then explored the connotation of transportation from the history of human civilization and its space - time attributes. Furthermore, the measurements, including social strategy measurement, ecological space - time measurement,and population economic measurement,were also employed to investigate the civilization connotation of transportation power.展开更多
文摘This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requiring more training or resources for incident management. Previous NCHRP reports discussed usage of different factors including incident severity, roadway characteristics, number of lanes involved and time of incident separately for estimating the performance. However, it does not tell us how to incorporate all the factors at the same time. Thus, this study aims to account for multiple factors to ensure fair comparisons. This study used 149,174 crashes from Iowa that occurred from 2018 to 2021. A Tobit regression model was used to find the effect of different variables on roadway clearance time. Variables that cannot be controlled directly by agencies such as crash severity, roadway type, weather conditions, lighting conditions, etc., were included in the analysis as it helps to reduce bias in the ranking procedure. Then clearance time of each crash is normalized into a base condition using the regression coefficients. The normalization makes the process more efficient as the effect of uncontrollable factors has already been mitigated. Finally, the agencies were ranked by their average normalized roadway clearance time. This ranking process allows agencies to track their performance of previous crashes, can be used in identifying low performing agencies that could use additional resources and training, and can be used to identify high performing agencies to recognize for their efforts and performance.
基金supported by Shanghai Pujiang Program (No.2019PJC062)the Natural Science Foundation of Shandong Province (No.ZR2021MG003)the Research Project on Undergraduate Teaching Reform of Higher Education in Shandong Province (No.Z2021046).
文摘The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.
文摘TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriately as a corridor or aerial implementation with proper spacing. Hence in many previous studies, their impact was mainly evaluated in scope of average and 85th percentile speed reduction. This paper presents and appraises the efficiency of calming measures of various types used in the city of Bialystok, Poland in terms of their influence zone. The assessment is based on speed profiles derived from individual test rides conducted with test vehicle equipped with GPS (global positioning system) data logger to obtain vehicle trajectory data. Speed measurements were conducted in vicinity of most commonly installed calming measures such as speed cameras, raised pedestrian crossing, raised intersection, speed bumps and speed cushion. The results reveal great differences within analysed devices and the usefulness of speed profiles in evaluation of their effectiveness. Speed bumps, most frequently used device in practice due to their low cost installation and speed reduction effectiveness, demonstrate lowest usefulness when influence zone is considered.
基金The National Natural Science Foundation of China(No.51178157)
文摘According to the distribution characteristics of traffic congestion in time and space, a measure index system of urban traffic congestion is set up based on the spatial and temporal distribution. Based on the analysis of the main characteristics of traffic congestion and the generation process of traffic congestion, the measure model for urban traffic congestion is constructed by the value function. Moreover, based on the measure values of traffic congestion in urban road networks with defined different levels, a method to prevent and control traffic congestion is designed. The application results confirm that the proposed method is feasible in comprehensive measures for urban traffic congestion and they are consistent with the results of other methods. The measuring results can therefore reflect the actual situation. The comprehensive measure model is scientific and the process is simple, and it has wide application prospects and practical value.
基金This project was supported by the National Natural Science Foundation of China (60572147,60132030)
文摘With the advent of large-scale and high-speed IPv6 network technology, an effective multi-point traffic sampling is becoming a necessity. A distributed multi-point traffic sampling method that provides an accurate and efficient solution to measure IPv6 traffic is proposed. The proposed method is to sample IPv6 traffic based on the analysis of bit randomness of each byte in the packet header. It offers a way to consistently select the same subset of packets at each measurement point, which satisfies the requirement of the distributed multi-point measurement. Finally, using real IPv6 traffic traces, the conclusion that the sampled traffic data have a good uniformity that satisfies the requirement of sampling randomness and can correctly reflect the packet size distribution of full packet trace is proved.
文摘The objective of traffic accident reconstruction is to recreate the event, which is necessary for analyzing the collision dynamics that is used as evidence in court cases. Traffic accident reconstruction and a demonstration of the event require precise data pertaining to scene measurement. However, there are differences between the individual measuring tools and methods related to traffic accident investigation, just as there are differences between the extent of their use and measurement accuracy. The most commonly applied method is the measuring tape, followed by measurements with total stations and laser rangefinders, while photogrammetry is also becoming increasingly important. The advantages and disadvantages of individual tools and methods affect the required number of investigators, portability, measurement range, applicability depending on the amount of light and weather conditions, on the possibility of remote measurement, on data collection time, on the scope, on the option to later process, the collected data and above all on the accuracy of all gathered data. The latter is crucial for proving the guilt or innocence of traffic accident participants at court, as inaccurate data can lead to an unjust sentence. Measurement accuracy using the above mentioned tools and methods also varies depending on which ones are used, as well as on other factors.
文摘Using the theory and method of unascertained measure, an unascertained measure model and the related confidence rule are established to assess the safety state of ship. Thus, the dangerous factors in the hull system can be identified, and the accident possibility, loss, and injury degree can be forcasted. An application result shows that the the proposed method is effective in assessment of the traffic safety of ships, and it is more simple in computation than the fuzzy synthetic evaluation method. The proposed method can provide a scientific basis for realizing shipping transportation security and formulating preventive measures.
文摘Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volume and speed;but they are expensive, difficult to set up, and require periodic maintenance. The moving observer method was proposed in 1954 by Wardrop and Charlesworth to estimate these variables inexpensively. Basically, the observer counts the number of vehicles overtaken, the number of vehicles passed, and the number of vehicles encountered while traveling in the opposite direction. The trip time is reported for both travel directions. Additionally, the length of road segment is measured. These variables are then used in estimating speeds and volumes. In a westbound direction from Interstate Highway 30 (I-30) in the DFW area, this study examined the accuracy and feasibility of this method by comparing it with stationary observer method as the standard method for such counts. The statistical tests were used to test the accuracy. Results show that this method provides accurate volume and speed estimates when compared to the stationary method for the road segment with three lanes per direction, especially when several runs are taken.
文摘In order to understand how a network is being used or whether it is being abused, an administrator needs to inspect the flow of the traffic and "infers" the intent of the users and applications. So the network traffic measurement and analysis are crucial to network monitoring, reliable DDoS detecting and attack source locating as well. In this paper, we discuss the principle of real-time network traffic measurement and analysis through embedding a traffic measurement and analysis engine into IP packet-decoding module, and emphasize the implementation of visualizing the real-time network traffic, which are helpful to network monitoring and network traffic modeling.
文摘Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics.
文摘The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, COP (center of pressure) movement on sitting surface and tracking error in driving simulator task. Drowsy states were predicted by means of the multinomial logistic regression model where behavioral measures and subjective evaluation of drowsiness corresponded to independent variables and a dependent variable, respectively. First, we compared the effectiveness of two methods (correlation coefficient-based method and odds ratio-based method) for determining the order of entering behavioral measures into the prediction model. It was found that the prediction accuracy did not differ between both methods. Second, the prediction accuracy was compared among the numbers of behavioral measures. The prediction accuracy did not differ among four, five and six behavioral measures and it was concluded that entering at least four behavioral measures into the prediction model is enough to achieve higher prediction accuracy. Third, the prediction accuracy was compared between the strongly drowsy and the weakly drowsy groups. The prediction accuracy differed between the two groups and the proposed method was effective under the condition where drowsiness was induced to a larger extent.
基金The Program for New Century Excellent Talents in University(No.NCET-11-0565)the Fundamental Research Funds for the Central Universities(No.K13JB00160,2012JBZ010,2011JBM217)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20120009120010)the Program for Innovative Research Team in University of Ministry of Education of China(No.IRT201206)the Natural Science Foundation of Shandong Province(No.ZR2012FM010,ZR2011FZ001)
文摘In order to classify the Intemet traffic of different Internet applications more quickly, two open Internet traffic traces, Auckland I1 and UNIBS traffic traces, are employed as study objects. Eight earliest packets with non-zero flow payload sizes are selected and their payload sizes are used as the early-stage flow features. Such features can be easily and rapidly extracted at the early flow stage, which makes them outstanding. The behavior patterns of different Intemet applications are analyzed by visualizing the early-stage packet size values. Analysis results show that most Internet applications can reflect their own early packet size behavior patterns. Early packet sizes are assumed to carry enough information for effective traffic identification. Three classical machine learning classifiers, classifier, naive Bayesian trees, i. e., the naive Bayesian and the radial basis function neural networks, are used to validate the effectiveness of the proposed assumption. The experimental results show that the early stage packet sizes can be used as features for traffic identification.
文摘With enormous growth of the number of Internet users and appearance of new applications, characterization of Internet traffic has attracted more and more attention and has become one of the major challenging issues in telecommunication network over the past few years. In this paper, we study the network traffic pattern of the aggregate traffic and of specific application traffic, especially the popular applications such as P2P, VoIP that contribute most network traffic. Our study verified that majority Internet backbone traffic is contributed by a small portion of users and a power function can be used to approximate the contribution of each user to the overall traffic. We show that P2P applications are the dominant traffic contributor in current Internet Backbone of China. In addition, we selectively present the traffic pattern of different applications in detail.
基金supported by the National Key Research and Development Program of China(No.2020YFE0200500)。
文摘WiFi has become one of the most popular ways to access the Internet.However,in large-scale campus wireless networks,it is challenging for network administrators to provide optimized access quality without knowledge on fine-grained traffic characteristics and real network performance.In this paper,we implement PerfMon,a network performance measurement and diagnosis system,which integrates collected multi-source datasets and analysis methods.Based on PerfMon,we first conduct a comprehensive measurement on application-level traffic patterns and behaviors from multiple dimensions in the wireless network of T university(TWLAN),which is one of the largest campus wireless networks.Then we systematically study the application-level network performance.We observe that the application-level traffic behaviors and performance vary greatly across different locations and device types.The performance is far from satisfactory in some cases.To diagnose these problems,we distinguish locations and device types,and further locate the most crucial factors that affect the performance.The results of case studies show that the influential factors can effectively characterize performance changes and explain for performance degradation.
基金ACKNOWLEDGEMENT This research was partially supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB30- 2605 the National High Technology Research and Development Program of China (863 Pro- gram) under Grant No. 2012AA012502+3 种基金 the National Key Technology Research and Dev- elopment Program of China under Grant No. 2012BAH37B00 the Program for New Cen- tury Excellent Talents in University under Gr- ant No. NCET-10-0863 the National Natural Science Foundation of China under Grants No 61173078, No. 61203105, No. 61173079, No. 61070130, No. 60903176 and the Provincial Natural Science Foundation of Shandong under Grants No. ZR2012FM010, No. ZR2011FZ001, No. ZR2010FM047, No. ZR2010FQ028, No. ZR2012FQ016.
文摘Traffic classification research has been suffering from a trouble of collecting accurate samples with ground truth.A model named Traffic Labeller(TL) is proposed to solve this problem.TL system captures all user socket calls and their corresponding application process information in the user mode on a Windows host.Once a sending data call has been captured,its 5-tuple {source IP,destination IP,source port,destination port and transport layer protocol},associated with its application information,is sent to an intermediate NDIS driver in the kernel mode.Then the intermediate driver writes application type information on TOS field of the IP packets which match the 5-tuple.In this way,each IP packet sent from the Windows host carries their application information.Therefore,traffic samples collected on the network have been labelled with the accurate application information and can be used for training effective traffic classification models.
文摘Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span>
文摘Congestion on the freeway is more frequent due to several traffic incidents, namely traffic accidents, debris on the road, vehicle breakdown, and collision with guardrails than any other incidents. These, in turn, affect the operational performance of the freeway by increasing queue length, volume, and density. Consequently, effective freeway management strategies can help to minimize these impacts. The study investigates and summarizes existing studies to identify the reasons for and effects of the traffic incidents. Attention is given to the available solutions of the freeway traffic incidents management. The ultimate goal of this study is to identify the gaps which are not yet addressed to improve the operational effectiveness of the freeway. This study was conducted through a comprehensive literature review of existing refereed publications, established standards, and formal guidelines. Literature was sought through the Transport Research International Documentation (TRID) database, IEEE Transactions database, and google scholar search engine. Research focusing on freeway traffic incidents is a growing concern in transportation operations, as transportation network performance depends on it. Due to the advancement of technology, emerging vehicle technologies like connected vehicles have the potential to address these problems affecting the US transportation system and revolutionize mobility in the future. The study can serve as a reference for the researchers that are involved in freeway traffic operations.
文摘Mashhad, the second largest city in Iran, like many other big cities, is faced with increasing traffic congestion owing to rapidly increasing population and annual pilgrimage. In recent years, Mashhad traffic and transportation authorities have been challenged with how to manage the increasing congestion with limited budgets for major roadway construction projects. Mashhad has recognized the need to improve the existing system capacity to get the most out of their cur- rent transportation system infrastructures. Since most of the delay times occur at signalized intersections, using an intelligent control system with proper capabilities to overcome the growing traffic requirements is recommended. Following comprehensive studies carried out with the aim of developing the Mashhad traffic control center, the SCATS adaptive traffic control system was introduced as the selected intelligent control system for integrating signalized intersections. The first intersection was equipped with this system in 2005. This paper describes the results of a field evaluation in which fixed actuated-coordinated signal timings are compared with those dynamically computed by SCATS. The ef- fects of this system on optimizing fuel consumption as well as reducing air pollutants are fully discussed. It is found that SCATS consistently reduced travel times and the average delay per stopped or approaching vehicle. The positive impact of adaptive traffic control systems on fuel consumption and air pollution are also highlighted.
文摘A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the operator to keep an eye on the network’s or object’s performance in an RF circuit. The purpose of the following research includes analyzing the capabilities of NetFlow analyzer to measure various parts, including filters, mixers, frequency sensitive networks, transistors, and other RF-based instruments. NetFlow Analyzer is a network traffic analyzer that measures the network parameters of electrical networks. Although there are other types of network parameter sets including Y, Z, & H-parameters, these instruments are typically employed to measure S-parameters since transmission & reflection of electrical networks are simple to calculate at high frequencies. These analyzers are widely employed to distinguish between two-port networks, including filters and amplifiers. By allowing the user to view the actual data that is sent over a network, packet by packet, a network analyzer informs you of what is happening there. Also, this research will contain the design model of NetFlow Analyzer that Measurements involving transmission and reflection use. Gain, insertion loss, and transmission coefficient are measured in transmission measurements, whereas return loss, reflection coefficient, impedance, and other variables are measured in reflection measurements. These analyzers’ operational frequencies vary from 1 Hz to 1.5 THz. These analyzers can also be used to examine stability in measurements of open loops, audio components, and ultrasonics.
基金funded by the China Railway Corporation Project “Research on International Mutual Recognition Mechanism and Implementation Plan for Railway Access Products”(2016D001-A)
文摘The 5G era witnessed the transformation in the transportation civilization,while the connotation of transportation has been extended into the domain of social measurement. The new connotation of transportation con-structed under the guidance of traffic organization measurement model can be considered from the perspective of or-ganizational measurement. Based on the above hypothesis,this research re - examined the definition of transportation based on the literature review,then explored the connotation of transportation from the history of human civilization and its space - time attributes. Furthermore, the measurements, including social strategy measurement, ecological space - time measurement,and population economic measurement,were also employed to investigate the civilization connotation of transportation power.