期刊文献+
共找到698篇文章
< 1 2 35 >
每页显示 20 50 100
Road traffic states estimation algorithm based on matching of regional traffic attracters 被引量:3
1
作者 徐东伟 董宏辉 +1 位作者 贾利民 田寅 《Journal of Central South University》 SCIE EI CAS 2014年第5期2100-2107,共8页
To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic at... To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic attracters was proposed in this work.First of all,the road traffic running states were divided into several different modes.The concept of the regional traffic attracters of the target link was put forward for effective matching.Then,the reference sequences of characteristics of traffic running states with the contents of the target link's traffic running states and regional traffic attracters under different modes were established.In addition,the current and historical regional traffic attracters of the target link were matched through certain matching rules,and the historical traffic running states of the target link corresponding to the optimal matching were selected as the initial recovery data,which were processed with Kalman filter to obtain the final recovery data.Finally,some typical expressways in Beijing were adopted for the verification of this road traffic states estimation algorithm.The results prove that this traffic states estimation approach based on matching of the regional traffic attracters is feasible and can achieve a high accuracy. 展开更多
关键词 road traffic regional traffic attracter traffic state data recovery MATCHING
下载PDF
Real-Time Traffic State and Boundary Flux Estimation with Distributed Speed Detecting Networks
2
作者 Yichi Zhang Heng Deng 《Journal of Transportation Technologies》 2022年第4期533-543,共11页
The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the reg... The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows. 展开更多
关键词 traffic state Boundary Flux Estimation Extended Kalman Filtering Distributed Speed Detecting Networks
下载PDF
A Model of Federated Evidence Fusion for Real-time Urban Traffic State Estimation 被引量:1
3
作者 孔庆杰 刘允才 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期793-798,804,共7页
In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The mod... In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions. 展开更多
关键词 traffic state estimation D-S EVIDENCE theory information FUSION INTELLIGENT TRANSPORTATION systems
下载PDF
Real-Time Urban Traffic State Estimation with A-GPS Mobile Phones as Probes 被引量:2
4
作者 Sha Tao Vasileios Manolopoulos +1 位作者 Saul Rodriguez Ana Rusu 《Journal of Transportation Technologies》 2012年第1期22-31,共10页
This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collec... This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collected by A-GPS mobile phones to track vehicles traveling on urban roads. In addition, tracking data obtained from individual mobile probes are aggregated to provide estimations of average road link speeds along rolling time periods. Moreover, the estimated average speeds are classified to different traffic condition levels, which are prepared for displaying a real-time traffic map on mobile phones. Simulation results demonstrate the effectiveness of the proposed method, which are fundamental for the subsequent development of a system demonstrator. 展开更多
关键词 traffic state Estimation A-GPS MOBILE Phones MICROSCOPIC traffic Simulation MOBILE TRACKING
下载PDF
Proactive traffic responsive control based on state-space neural network and extended Kalman filter 被引量:3
5
作者 过秀成 李岩 杨洁 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期466-470,共5页
The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg... The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency. 展开更多
关键词 state-space neural network extended Kalman filter traffic responsive control timing plan traffic state prediction
下载PDF
Real-time road traffic state prediction based on ARIMA and Kalman filter 被引量:27
6
作者 Dong-wei XU Yong-dong WANG +2 位作者 Li-min JIA Yong QIN Hong-hui DONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第2期287-302,共16页
The realization of road traffic prediction not only provides real-time and effective information for travelers, but also helps them select the optimal route to reduce travel time. Road traffic prediction offers traffi... The realization of road traffic prediction not only provides real-time and effective information for travelers, but also helps them select the optimal route to reduce travel time. Road traffic prediction offers traffic guidance for travelers and relieves traffic jams. In this paper, a real-time road traffic state prediction based on autoregressive integrated moving average (ARIMA) and the Kalman filter is proposed. First, an ARIMA model of road traffic data in a time series is built on the basis of historical road traffic data. Second, this ARIMA model is combined with the Kalman filter to construct a road traffic state prediction algorithm, which can acquire the state, measurement, and updating equations of the Kalman filter. Third, the optimal parameters of the algorithm are discussed on the basis of historical road traffic data. Finally, four road segments in Beijing are adopted for case studies. Experimental results show that the real-time road traffic state prediction based on ARIMA and the Kalman filter is feasible and can achieve high accuracy. 展开更多
关键词 Autoregressive integrated moving average (ARIMA) model Kalman filter Road traffic state REAL-TIME PREDICTION
原文传递
Virtual speed sensors based algorithm for expressway traffic state estimation 被引量:4
7
作者 XU DongWei DONG HongHui +1 位作者 JIA LiMin QIN Yong 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1381-1390,共10页
The accurate estimation of expressway traffic state can provide decision-making for both travelers and traffic managers. The speed is one of the most representative parameter of the traffic state. So the expressway sp... The accurate estimation of expressway traffic state can provide decision-making for both travelers and traffic managers. The speed is one of the most representative parameter of the traffic state. So the expressway speed spatial distribution can be taken as the expressway traffic state equivalent. In this paper, an algorithm based on virtual speed sensors (VSS) is presented to estimate the expressway traffic state (the speed spatial distribution). To gain the spatial distribution of expressway traffic state, virtual speed sensors are defined between adjacent traffic flow sensors. Then, the speed data extracted from traffic flow sensors in time series are mapped to space series to design virtual speed sensors. Then the speed of virtual speed sensors can be calculated with the weight matrix which is related with the speed of virtual speed sensors and the speed data extracted from traffic flow sensors and the speed data extracted from traffic flow sensors in time series. Finally, the expressway traffic state (the speed spatial distribution) can be gained. The acquisition of average travel speed of the expressway is taken for application of this traffic state estimation algorithm. One typical expressway in Beijing is adopted for the experiment analysis. The results prove that this traffic state estimation approach based on VSS is feasible and can achieve a high accuracy. 展开更多
关键词 traffic state virtual speed sensor EXPRESSWAY average travel speed
原文传递
DeepTSP:Deep traffic state prediction model based on large-scale empirical data 被引量:5
8
作者 Yang Liu Cheng Lyu +3 位作者 Yuan Zhang Zhiyuan Liu Wenwu Yu Xiaobo Qu 《Communications in Transportation Research》 2021年第1期90-99,共10页
Real-time traffic state(e.g.,speed)prediction is an essential component for traffic control and management in an urban road network.How to build an effective large-scale traffic state prediction system is a challengin... Real-time traffic state(e.g.,speed)prediction is an essential component for traffic control and management in an urban road network.How to build an effective large-scale traffic state prediction system is a challenging but highly valuable problem.This study focuses on the construction of an effective solution designed for spatiotemporal data to predict the traffic state of large-scale traffic systems.In this study,we first summarize the three challenges faced by large-scale traffic state prediction,i.e.,scale,granularity,and sparsity.Based on the domain knowledge of traffic engineering,the propagation of traffic states along the road network is theoretically analyzed,which are elaborated in aspects of the temporal and spatial propagation of traffic state,traffic state experience replay,and multi-source data fusion.A deep learning architecture,termed as Deep Traffic State Prediction(DeepTSP),is therefore proposed to address the current challenges in traffic state prediction.Experiments demonstrate that the proposed DeepTSP model can effectively predict large-scale traffic states. 展开更多
关键词 Large-scale traffic prediction traffic state propagation Spatio-temporal data
原文传递
Urban expressway traffic state forecasting based on multimode maximum entropy model 被引量:6
9
作者 SUN XiaoLiang1,2, JIA LiMin1, DONG HongHui1, QIN Yong1 & GUO Min3 1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China 2School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China 3Beijing Traffic Management Bureau, Beijing 100044, China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第10期2808-2816,共9页
The accurate and timely traffic state prediction has become increasingly important for the traffic participants,especially for the traffic managements. In this paper,the traffic state is described by Micro-LOS,and a d... The accurate and timely traffic state prediction has become increasingly important for the traffic participants,especially for the traffic managements. In this paper,the traffic state is described by Micro-LOS,and a direct prediction method is introduced. The development of the proposed method is based on Maximum Entropy (ME) models trained for multiple modes. In the Multimode Maximum Entropy (MME) framework,the different features like temporal and spatial features of traffic systems,regional traffic state are integrated simultaneously,and the different state behaviors based on 14 traffic modes defined by average speed according to the date-time division are also dealt with. The experiments based on the real data in Beijing expressway prove that the MME models outperforms the already existing model in both effectiveness and robustness. 展开更多
关键词 traffic state FORECAST MAXIMUM ENTROPY model MULTIMODE
原文传递
A genetic resampling particle filter for freeway traffic-state estimation 被引量:5
10
作者 毕军 关伟 齐龙涛 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期595-599,共5页
On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and becaus... On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data. 展开更多
关键词 particle filter genetic mechanism traffic-state estimation traffic flow model
下载PDF
不同降雨量下基于宏观基本图的边界控制策略
11
作者 赵小梅 郝郭宇 +1 位作者 牛晓婧 周志前 《华南理工大学学报(自然科学版)》 EI CSCD 北大核心 2024年第1期72-82,共11页
在雨雪等不利天气条件下,城市交通拥堵加剧,北京、天津等大城市在降雨条件下经常发生多路段区域性交通拥堵。因此,根据天津市中心城区和市郊区域路网实际交通数据,以路网交通流宏观基本图模型为研究基础,对比不同降雨量以及不同路网的... 在雨雪等不利天气条件下,城市交通拥堵加剧,北京、天津等大城市在降雨条件下经常发生多路段区域性交通拥堵。因此,根据天津市中心城区和市郊区域路网实际交通数据,以路网交通流宏观基本图模型为研究基础,对比不同降雨量以及不同路网的路网交通流时序和宏观基本图变化规律,分析不同降雨量对天津市中心城区和市郊区域路网交通状态的影响。基于不同降雨量下中心城区和市郊区域路网宏观交通流的变化规律,分别构建路网动态演化模型,并对模型的参数进行标定和有效性验证。针对降雨条件下路网发生的区域性拥堵问题,基于宏观基本图的边界控制分别设计了不同降雨量下中心城区和市郊区域路网控制策略,通过仿真实验分析验证了不同控制策略的效果,并给出了能够缓解中心城区和市郊区域路网拥堵的可行策略。结果表明:在小雨天气条件下,将从市郊区域向中心城区的交通流量的转移比例减小量控制在9%~50%范围之内时,中心城区与市郊区域交通状态更加均衡,路网调控效果更好;在大雨天气条件下,将从市郊区域向中心城区的交通流量的转移比例减小量控制在23%~50%范围之内时,中心城区与市郊区域交通状态更加均衡,路网调控效果更好。这表明该控制策略能够缓解中心城区和市郊区域路网的交通拥堵,保障路网交通系统的稳定运行。 展开更多
关键词 城市交通 边界控制 宏观基本图 交通状态 降雨天气
下载PDF
多源数据融合驱动的城市快速路交通状态划分
12
作者 谷远利 杜恒 陆文琦 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第3期213-220,231,共9页
为提升交通状态划分效果,本文提出一种基于负激励项的改进模糊C均值聚类(BNITFCM)交通状态划分模型。该模型在原有FCM(Fuzzy C-Means)模型基础上考虑了交通流样本点权重以及交通流参数权重对聚类效果的影响,并引入隶属度负激励项、交通... 为提升交通状态划分效果,本文提出一种基于负激励项的改进模糊C均值聚类(BNITFCM)交通状态划分模型。该模型在原有FCM(Fuzzy C-Means)模型基础上考虑了交通流样本点权重以及交通流参数权重对聚类效果的影响,并引入隶属度负激励项、交通流权重负激励项、交通流样本点权重负激励项使聚类结果呈现类内高耦合、类间低耦合的特性。在此基础上,对样本点进行加权处理,用加权欧氏距离描述样本点之间的关系。通过拉格朗日乘子法得出模型的迭代公式并通过该迭代公式对模型进行求解。针对大多交通状态划分方法参数特征维度低的问题,本文以经过多源数据融合获得的速度、速度标准差、流量、密度和道路满载度构建高维特征输入。以数值仿真实验检验了BNIT-FCM模型在分类准确性方面的表现,结果表明,BNIT-FCM模型较FCM模型和改进模糊隶属度FCM模型(IFMD-FCM)的ARI(Adjusted Rand Index)分别提升了4.17%和3.56%。以深圳市北环大道卡口和浮动车数据的交通流为研究对象,实验结果表明,BNIT-FCM模型对比FCM模型以及IFMD-FCM模型的轮廓系数分别提升了4.12%和4.07%;同时,BNIT-FCM模型采用多源融合数据的速度及其标准差比单独采用卡口数据和单独采用浮动车数据的速度及其标准差的轮廓系数分别提升了29.67%和54.13%。 展开更多
关键词 城市交通 交通状态划分 改进FCM聚类模型 多源数据 多维特征
下载PDF
基于轨迹数据的快速路交织区拥堵演变特征研究
13
作者 汪春 范生海 《盐城工学院学报(自然科学版)》 CAS 2024年第2期38-42,共5页
对快速路交织区拥堵演变过程中宏观交通流参数与交通状态的时变关系进行研究,可以为快速路交织区交通状态判别提供科学依据。利用YOLO算法从高清视频中提取车辆轨迹数据后,利用卡尔曼滤波对原始轨迹数据进行降噪平滑处理;对快速路交织... 对快速路交织区拥堵演变过程中宏观交通流参数与交通状态的时变关系进行研究,可以为快速路交织区交通状态判别提供科学依据。利用YOLO算法从高清视频中提取车辆轨迹数据后,利用卡尔曼滤波对原始轨迹数据进行降噪平滑处理;对快速路交织区拥堵演变过程中速度、流量、密度等宏观交通流参数与交通状态进行时变分析,揭示快速路交织区宏观交通流参数在拥堵演变过程中的时变特征。结果表明,在快速路交织区交通状态判别时,融合平均行程速度和交通流密度等指标,可以有效提高交通状态判别精度。 展开更多
关键词 快速路交织区 拥堵演变 轨迹数据 宏观交通流参数 交通状态
下载PDF
Criterion for the Emergence of Meta-Stable States in Traffic Systems
14
作者 Liuhua Zhu 《Journal of Applied Mathematics and Physics》 2020年第6期976-982,共7页
The measurements on actual traffic have revealed the existence of meta-stable states with high flow. Such nonlinear phenomena have not been observed in the classic Nagel-Schreckenberg traffic flow model. Here we just ... The measurements on actual traffic have revealed the existence of meta-stable states with high flow. Such nonlinear phenomena have not been observed in the classic Nagel-Schreckenberg traffic flow model. Here we just add a constraint to the classic model by introducing a velocity-dependent randomization. Two typical randomization strategies are adopted in this paper. It is shown that the Matthew effect is a necessary condition to induce traffic meta-stable states, thus shedding a light on the prerequisites for the emergence of hysteresis loop in the fundamental diagrams. 展开更多
关键词 traffic Flow Cellular Automaton Matthew Effect Hysteresis Loop Meta-Stable state
下载PDF
街景影像在城市交通研究中的应用:回顾、分析和展望
15
作者 金盛 郭文彤 +1 位作者 江杨 陈梦微 《交通运输工程与信息学报》 2024年第2期191-209,共19页
街景影像覆盖面广,能提供城市级别的交通场景信息,对开展交通研究分析提供了大规模数据源的支持和新的研究方法。为了探究街景影像在交通研究中的应用情况,从Web of Science核心集合数据库筛选了2011—2022年街景图像在交通研究中应用... 街景影像覆盖面广,能提供城市级别的交通场景信息,对开展交通研究分析提供了大规模数据源的支持和新的研究方法。为了探究街景影像在交通研究中的应用情况,从Web of Science核心集合数据库筛选了2011—2022年街景图像在交通研究中应用相关的143篇论文,借助CiteSpace文献计量分析软件从年发文量、作者合作图谱、国家与机构合作图谱、关键词共现、关键词聚类和主题突发检测等方面进行归纳分析。在此基础上总结街景影像在交通基础设施、交通安全感知、出行辅助和出行环境感知四方面的应用研究进展,并对未来的研究方向提出展望。文献综述结果表明:(1)街景影像数据已被广泛应用于交通领域不同维度的研究,大多数研究通过卷积神经网络模型提取街景影像信息以反映交通场景特征;(2)由于街景数据采集时间跨度大,致使当前基于街景影像数据的交通方面应用主要集中在空间维度研究,缺乏动态时间维度的分析;(3)街景影像与交通领域知识数据进行融合分析建模是街景影像数据在交通领域应用的发展趋势。 展开更多
关键词 交通工程 街景图像 CITESPACE 综述 研究现状 研究趋势 交通分析
下载PDF
基于物理信息自适应深度学习的交通状态估计
16
作者 王挺 王洪刚 +2 位作者 马昌喜 邹国建 李晔 《兰州交通大学学报》 CAS 2024年第4期37-44,97,共9页
物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问... 物理信息深度学习(physics-informed deep learning, PIDL)是一种将深度学习与物理学先验知识相结合的新兴范式,该范式在智能交通领域,尤其在交通状态估计应用中,展现出了巨大潜力。为进一步优化物理信息深度学习模型在交通状态估计问题上的准确度与收敛速度,构建了一个结合Aw-Rascle宏观交通流模型的物理信息自适应深度学习模型(physics-informed adaptive deep learning with Aw-Rascle, PIAdapDL-AR),依据有限与局部的交通检测数据,实时准确估计全局交通流状态。主要的改进包括两部分,一是在PIDL框架中的物理部分引入高阶Aw-Rascle交通流模型作为物理约束条件,引导并规范神经网络的训练过程;二是在神经网络部分融合自适应激活函数,替代固定的非线性激活函数,以动态优化神经网络性能。基于NGSIM数据集生成模拟的固定检测器数据和移动检测器数据,进行实验以验证模型有效性。实验结果表明:在不同覆盖率的固定检测数据场景下,PIAdapDL-AR的相对误差相比于基线模型PIDL-LWR降低了34.38%~45.24%;在不同渗透率的移动检测数据场景下,PIAdapDL-AR的相对误差相比于PIDL-LWR降低了18.33%~34.95%;融合自适应激活函数的PIAdapDL-AR的收敛速度优于配置固定激活函数的PIDL-AR,且收敛速度和估计精度均随着自适应激活函数中比例因子的增大而提升。 展开更多
关键词 智能交通 交通状态估计 物理信息深度学习 交通流 神经网络
下载PDF
Empirical Exploration of Air Traffic Control Behaviour at Terminal Maneuvering Area:From an Air Traffic Flow Aspect 被引量:2
17
作者 WANG Chao LI Shanmei ZHU Ming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第2期187-196,共10页
In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway... In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway refers to the time interval between successive flying aircraft in air traffic flow,which is one of the most important characteristics of air traffic flow.The variation in aircraft headway reveals the air traffic control behaviour.In this paper,we study the characteristics of air traffic control behaviours by analyzing radar tracks in a terminal maneuvering area.The headway in arrival traffic flow is measured after the determination of aircraft trailing relationships.The headway evolutionary characteristics for different control decisions and the headway evolutionary characteristics in different phase-states are discussed,and some interesting findings are gotten.This work may be helpful for scholars and managers in understanding the intrinsic nature of air traffic flow and in the development of intelligent assistant decision systems for air traffic management. 展开更多
关键词 air traffic aircraft headway traffic state air traffic control
下载PDF
基于SVM的交通状态识别方法研究
18
作者 崔淑艳 宇仁德 朱燕华 《山东理工大学学报(自然科学版)》 CAS 2024年第5期7-11,60,共6页
为了及时准确地识别城市主干路交通状态,使用无人机悬停于观测路段上方进行交通数据采集,对采集的交通视频数据进行分帧、裁剪,建立交通状态图像数据集并进行预处理。针对PCA算法易受光照影响这一问题,融合LBP算法提取图像特征,并通过... 为了及时准确地识别城市主干路交通状态,使用无人机悬停于观测路段上方进行交通数据采集,对采集的交通视频数据进行分帧、裁剪,建立交通状态图像数据集并进行预处理。针对PCA算法易受光照影响这一问题,融合LBP算法提取图像特征,并通过粒子群算法优化SVM算法,搭建交通状态识别模型。利用已建立的交通状态图像数据集训练LBP-PCA-SVM和PCA-SVM模型,对所得结果进行对比分析。结果表明,LBP-PCA-SVM模型相比PCA-SVM模型识别性能较高,并且能够满足实时性要求。 展开更多
关键词 交通状态识别 支持向量机 无人机数据采集
下载PDF
基于半动态交通均衡的电动汽车充电负荷概率分布建模
19
作者 朱峻良 武志刚 刘嘉宁 《电网技术》 EI CSCD 北大核心 2024年第2期640-649,共10页
传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概... 传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。 展开更多
关键词 电动汽车 半动态交通均衡 组合荷电状态 充电负荷建模 概率模型
下载PDF
船舶流量智能交通检测系统设计
20
作者 王志宽 张成全 《舰船科学技术》 北大核心 2024年第17期158-161,共4页
以避免船舶AIS数据内噪声对船舶流量检测干扰,准确、实时实现船舶流量智能交通检测,设计船舶流量智能交通检测系统。采集模块采集海上航线船舶AIS数据,使用逻辑分析模块内的船舶交通流状态空间模型,获取当前海上航线船舶交通流空间状态... 以避免船舶AIS数据内噪声对船舶流量检测干扰,准确、实时实现船舶流量智能交通检测,设计船舶流量智能交通检测系统。采集模块采集海上航线船舶AIS数据,使用逻辑分析模块内的船舶交通流状态空间模型,获取当前海上航线船舶交通流空间状态,卡尔曼滤波算法将上一个航线船舶交通流空间状态作为观测向量,同时抑制船舶交通流空间状态观测向量内干扰噪声,建立船舶流量智能交通检测模型,不断更新海上航线船舶流量空间状态转移矩阵,推理当前时刻船舶交通流量空间状态,得到船舶流量智能交通检测结果。实验表明,该方法具备较强的船舶AIS数据获取能力,可准确获得海上航线船舶流量状态,并有效检测不同时刻船舶流量,应用效果较好。 展开更多
关键词 船舶流量 智能交通 检测系统 空间状态 卡尔曼滤波
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部