Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and des...Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and designed to provide a shortcut road between two hydropower stations: Jinping I and Jinping II of the Jinping Hydropower Project, located on Yalong River, Liangshan State, Sichuan Province, China. The tunnel is so deep that building any shafts is impossible. The construction starts from both ends (east and west ends), and the construction length from the west end is 10 km with a blind heading. This paper deals with an overview of this project and analysis of the engineering features, as well as key technologies developed and applied during the construction, including geological prediction, rock burst prevention under a super high in-situ stress, sealing of groundwater with a high pressure and big flow rate, ventilation for a blind heading of 10 km, wet spraying of shotcrete at zones of rock burst and rich water, etc. The application of the new technologies to the construction achieved a high quality tunnel within the contract period.展开更多
To evaluate the rationality of the excavation and support structure design in tunnel engineering, numerical simulation and structural deformation stability analysis in excavation and support in a traffic tunnel are ca...To evaluate the rationality of the excavation and support structure design in tunnel engineering, numerical simulation and structural deformation stability analysis in excavation and support in a traffic tunnel are carried out in combination with the practical geological conditions study. The computation results demonstrate that following excavation, the surrounding rock deforms minimally and has a large self-bearing capacity. The shotcrete-bolt structure in the initial support has small deformation and stress, ensuring that it meets the safety and stability requirements. The stress of the secondary lining structure is calculated, which can also meet the structural strength requirements. The traffic tunnel’s supporting system is a practical and cost-effective manner. The proposed study will provide a specific reference for the design and research of the support structures in traffic tunnels.展开更多
The biggest environmental problem caused by the construction of tunnels adjacent to high-rise buildings is the settlement of buildings.The paper analyzes the influence of tunnel excavation on the deformation of the su...The biggest environmental problem caused by the construction of tunnels adjacent to high-rise buildings is the settlement of buildings.The paper analyzes the influence of tunnel excavation on the deformation of the superstructure and the deformation mode of the superstructure.It introduces the indicators and standards for the construction control of tunnel adjacent to the building at home and abroad.Combined with the Yuzhong tunnel project under construction in Chongqing,the main monitoring indicators and control standards of the Yuzhong Tunnel passing through the main buildings are given after comprehensive analysis and considerations,which provide a reference for the deformation control indicators of similar urban traffic tunnels adjacent to high-rise buildings.展开更多
Traffic tunnels include tunnel works for traffic and transport in the areas of railway, highway, and rail transit. With many mountains and nearly one fifth of the global population, China possesses numerous large citi...Traffic tunnels include tunnel works for traffic and transport in the areas of railway, highway, and rail transit. With many mountains and nearly one fifth of the global population, China possesses numerous large cities and megapolises with rapidly growing economies and huge traffic demands. As a result, a great deal of railway, highway, and rail transit facilities are required in this country. In the past, the construction of these facilities mainly involved subgrade and bridge works; in recent years.展开更多
In order to study the influence of the traffic characteristics on traffic accidents in extra long tunnel, the main measurement indicators of traffic flow during the time of traffic accidents are matched with the accid...In order to study the influence of the traffic characteristics on traffic accidents in extra long tunnel, the main measurement indicators of traffic flow during the time of traffic accidents are matched with the accident information to form a data set of the number of traffic accidents and the hourly traffic flow of the accident. Vehicle ratio and the number of accidents are mainly used as the characteristic indicators of traffic flow. At the same time, the longitudinal distribution law of the average speed of traffic flow and the number of traffic accidents in the extra long tunnel is studied. Based on the superposition principle, the extra long tunnel is divided into 5 traffic safety zones. This paper analyzes the distribution of time, morphology, cause of accident, and other characteristics in different traffic safety zones, finding that the shape of traffic accidents in extra long tunnel is mainly rear-end collisions. Improper operation and illegal lane changes are the main causes of accidents.展开更多
针对隧道环境中监控图像分辨率低与车辆运动轨迹特征异质性减弱导致的驾驶员识别准确率偏低问题,本文提出一种融合卷积与多头注意力机制的驾驶员识别方法(Multi-scale CNN with Multi Attention),通过充分利用驾驶过程人—车—路—环境...针对隧道环境中监控图像分辨率低与车辆运动轨迹特征异质性减弱导致的驾驶员识别准确率偏低问题,本文提出一种融合卷积与多头注意力机制的驾驶员识别方法(Multi-scale CNN with Multi Attention),通过充分利用驾驶过程人—车—路—环境多源信息的协同耦合关系提升识别精度。首先,设计开展实车驾驶试验,构建针对隧道路段的人—车—路多源驾驶数据库并设计特征集合;其次,搭建驾驶员识别模型框架,该框架通过多尺度卷积神经网络学习驾驶过程中的局部波动,并通过并行的多头自注意力层结构捕捉驾驶时间序列的长期依赖性,实现局部信息与全局信息的有效整合,从而提升隧道场景的驾驶员识别效果。结果显示,与其他先进的算法相比,所提出的模型在驾驶员身份识别任务中的准确率高达99.07%,调和F_(1)分数达到99.03%,充分证明了所提方法的有效性。此外,通过特征贡献度评估方法对隧道场景下驾驶员身份识别任务中的特征重要性进行深入探究发现,相较于车辆历史运动数据,驾驶员心理、生理及视觉特征显示出更高的贡献度。研究结果可为隧道场景多源数据应用提供支持,并对隧道安全监管提供技术支撑。展开更多
文摘Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and designed to provide a shortcut road between two hydropower stations: Jinping I and Jinping II of the Jinping Hydropower Project, located on Yalong River, Liangshan State, Sichuan Province, China. The tunnel is so deep that building any shafts is impossible. The construction starts from both ends (east and west ends), and the construction length from the west end is 10 km with a blind heading. This paper deals with an overview of this project and analysis of the engineering features, as well as key technologies developed and applied during the construction, including geological prediction, rock burst prevention under a super high in-situ stress, sealing of groundwater with a high pressure and big flow rate, ventilation for a blind heading of 10 km, wet spraying of shotcrete at zones of rock burst and rich water, etc. The application of the new technologies to the construction achieved a high quality tunnel within the contract period.
基金National Natural Science Foundation of China(NSFC)under Contract(51428902)。
文摘To evaluate the rationality of the excavation and support structure design in tunnel engineering, numerical simulation and structural deformation stability analysis in excavation and support in a traffic tunnel are carried out in combination with the practical geological conditions study. The computation results demonstrate that following excavation, the surrounding rock deforms minimally and has a large self-bearing capacity. The shotcrete-bolt structure in the initial support has small deformation and stress, ensuring that it meets the safety and stability requirements. The stress of the secondary lining structure is calculated, which can also meet the structural strength requirements. The traffic tunnel’s supporting system is a practical and cost-effective manner. The proposed study will provide a specific reference for the design and research of the support structures in traffic tunnels.
基金National Key R&D Program of China Special Funding(2017YFC0805305)National Natural Science Foundation of China(41601574)Chinese Academy of Engineering Institute-Local Cooperation Project(2019-CQ-ZD-4)。
文摘The biggest environmental problem caused by the construction of tunnels adjacent to high-rise buildings is the settlement of buildings.The paper analyzes the influence of tunnel excavation on the deformation of the superstructure and the deformation mode of the superstructure.It introduces the indicators and standards for the construction control of tunnel adjacent to the building at home and abroad.Combined with the Yuzhong tunnel project under construction in Chongqing,the main monitoring indicators and control standards of the Yuzhong Tunnel passing through the main buildings are given after comprehensive analysis and considerations,which provide a reference for the deformation control indicators of similar urban traffic tunnels adjacent to high-rise buildings.
文摘Traffic tunnels include tunnel works for traffic and transport in the areas of railway, highway, and rail transit. With many mountains and nearly one fifth of the global population, China possesses numerous large cities and megapolises with rapidly growing economies and huge traffic demands. As a result, a great deal of railway, highway, and rail transit facilities are required in this country. In the past, the construction of these facilities mainly involved subgrade and bridge works; in recent years.
文摘In order to study the influence of the traffic characteristics on traffic accidents in extra long tunnel, the main measurement indicators of traffic flow during the time of traffic accidents are matched with the accident information to form a data set of the number of traffic accidents and the hourly traffic flow of the accident. Vehicle ratio and the number of accidents are mainly used as the characteristic indicators of traffic flow. At the same time, the longitudinal distribution law of the average speed of traffic flow and the number of traffic accidents in the extra long tunnel is studied. Based on the superposition principle, the extra long tunnel is divided into 5 traffic safety zones. This paper analyzes the distribution of time, morphology, cause of accident, and other characteristics in different traffic safety zones, finding that the shape of traffic accidents in extra long tunnel is mainly rear-end collisions. Improper operation and illegal lane changes are the main causes of accidents.
文摘针对隧道环境中监控图像分辨率低与车辆运动轨迹特征异质性减弱导致的驾驶员识别准确率偏低问题,本文提出一种融合卷积与多头注意力机制的驾驶员识别方法(Multi-scale CNN with Multi Attention),通过充分利用驾驶过程人—车—路—环境多源信息的协同耦合关系提升识别精度。首先,设计开展实车驾驶试验,构建针对隧道路段的人—车—路多源驾驶数据库并设计特征集合;其次,搭建驾驶员识别模型框架,该框架通过多尺度卷积神经网络学习驾驶过程中的局部波动,并通过并行的多头自注意力层结构捕捉驾驶时间序列的长期依赖性,实现局部信息与全局信息的有效整合,从而提升隧道场景的驾驶员识别效果。结果显示,与其他先进的算法相比,所提出的模型在驾驶员身份识别任务中的准确率高达99.07%,调和F_(1)分数达到99.03%,充分证明了所提方法的有效性。此外,通过特征贡献度评估方法对隧道场景下驾驶员身份识别任务中的特征重要性进行深入探究发现,相较于车辆历史运动数据,驾驶员心理、生理及视觉特征显示出更高的贡献度。研究结果可为隧道场景多源数据应用提供支持,并对隧道安全监管提供技术支撑。