Two discriminative methods for solving tone problems in Mandarin speech recognition are presented. First, discriminative training on the HMM (hidden Markov model) based tone models is proposed. Then an integration t...Two discriminative methods for solving tone problems in Mandarin speech recognition are presented. First, discriminative training on the HMM (hidden Markov model) based tone models is proposed. Then an integration technique of tone models into a large vocabulary continuous speech recognition system is presented. Discriminative model weight training based on minimum phone error criteria is adopted aiming at optimal integration of the tone models. The extended Baum Welch algorithm is applied to find the model-dependent weights to scale the acoustic scores and tone scores. Experimental results show that tone recognition rates and continuous speech recognition accuracy can be improved by the discriminatively trained tone model. Performance of a large vocabulary continuous Mandarin speech recognition system can be further enhanced by the discriminatively trained weight combinations due to a better interpolation of the given models.展开更多
This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML trai...This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML training in basic HMM can be overcome, and its discriminative ability and recognition performance can be improved. Experimental results demonstrate that the discriminative ability and recognition performance of HMM/MLP is apparently better than normal HMM.展开更多
Decreased hedonic and motivational capacity,namely anhedonia,is one of the cardinal features for patients with major depressive disorder(MDD).Recent studies suggest that this reduced ability to experience pleasure i...Decreased hedonic and motivational capacity,namely anhedonia,is one of the cardinal features for patients with major depressive disorder(MDD).Recent studies suggest that this reduced ability to experience pleasure is also a marker or endophenotype for MDD and represents a genetic predisposition to this disorder.Dr.展开更多
A stronger canonical model was developed to improve the performance of automatic pronunciation evaluations. Three different strategies were investigated with speaker adaptive training to normalize variations among spe...A stronger canonical model was developed to improve the performance of automatic pronunciation evaluations. Three different strategies were investigated with speaker adaptive training to normalize variations among speakers, minimum phone error training to identify easily confused phones and maximum likelihood linear regression (MLLR) adaptation to compensate for accent variations between native and non-native speakers. The three schemes were combined to improve the correlation coefficient between machine scores and human scores from 0.651 to 0.679 on the sentence level and from 0.788 to 0.822 on the speaker level.展开更多
In this paper we address the problem of audio-visual speech recognition in the framework of the multi-stream hidden Markov model. Stream weight training based on minimum classification error criterion is dis...In this paper we address the problem of audio-visual speech recognition in the framework of the multi-stream hidden Markov model. Stream weight training based on minimum classification error criterion is discussed for use in large vocabulary continuous speech recognition (LVCSR). We present the lattice re- scoring and Viterbi approaches for calculating the loss function of continuous speech. The experimental re- sults show that in the case of clean audio, the system performance can be improved by 36.1% in relative word error rate reduction when using state-based stream weights trained by a Viterbi approach, compared to an audio only speech recognition system. Further experimental results demonstrate that our audio-visual LVCSR system provides significant enhancement of robustness in noisy environments.展开更多
This paper presents a new discriminative approach for training Gaussian mixture models(GMMs)of hidden Markov models(HMMs)based acoustic model in a large vocabulary continuous speech recognition(LVCSR)system.This appro...This paper presents a new discriminative approach for training Gaussian mixture models(GMMs)of hidden Markov models(HMMs)based acoustic model in a large vocabulary continuous speech recognition(LVCSR)system.This approach is featured by embedding a rival penalized competitive learning(RPCL)mechanism on the level of hidden Markov states.For every input,the correct identity state,called winner and obtained by the Viterbi force alignment,is enhanced to describe this input while its most competitive rival is penalized by de-learning,which makes GMMs-based states become more discriminative.Without the extensive computing burden required by typical discriminative learning methods for one-pass recognition of the training set,the new approach saves computing costs considerably.Experiments show that the proposed method has a good convergence with better performances than the classical maximum likelihood estimation(MLE)based method.Comparing with two conventional discriminative methods,the proposed method demonstrates improved generalization ability,especially when the test set is not well matched with the training set.展开更多
To utilize the supra-segmental nature of Mandarin tones, this article proposes a feature extraction method for hidden markov model (HMM) based tone modeling. The method uses linear transforms to project Fo(fundamen...To utilize the supra-segmental nature of Mandarin tones, this article proposes a feature extraction method for hidden markov model (HMM) based tone modeling. The method uses linear transforms to project Fo(fundamental frequency) features of neighboring syllables as compensations, and adds them to the original Fo features of the current syUable. The transforms are discriminatively trained by using an objective function termed as "minimum tone error", which is a smooth approximation of tone recognition accuracy. Experiments show that the new tonal features achieve 3.82% tone recognition rate improvement, compared with the baseline, using maximum likelihood trained HMM on the normal F0 features. Further experiments show that discriminative HMM training on the new features is 8.78% better than the baseline.展开更多
文摘Two discriminative methods for solving tone problems in Mandarin speech recognition are presented. First, discriminative training on the HMM (hidden Markov model) based tone models is proposed. Then an integration technique of tone models into a large vocabulary continuous speech recognition system is presented. Discriminative model weight training based on minimum phone error criteria is adopted aiming at optimal integration of the tone models. The extended Baum Welch algorithm is applied to find the model-dependent weights to scale the acoustic scores and tone scores. Experimental results show that tone recognition rates and continuous speech recognition accuracy can be improved by the discriminatively trained tone model. Performance of a large vocabulary continuous Mandarin speech recognition system can be further enhanced by the discriminatively trained weight combinations due to a better interpolation of the given models.
文摘This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML training in basic HMM can be overcome, and its discriminative ability and recognition performance can be improved. Experimental results demonstrate that the discriminative ability and recognition performance of HMM/MLP is apparently better than normal HMM.
文摘Decreased hedonic and motivational capacity,namely anhedonia,is one of the cardinal features for patients with major depressive disorder(MDD).Recent studies suggest that this reduced ability to experience pleasure is also a marker or endophenotype for MDD and represents a genetic predisposition to this disorder.Dr.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2008AA01Z118)
文摘A stronger canonical model was developed to improve the performance of automatic pronunciation evaluations. Three different strategies were investigated with speaker adaptive training to normalize variations among speakers, minimum phone error training to identify easily confused phones and maximum likelihood linear regression (MLLR) adaptation to compensate for accent variations between native and non-native speakers. The three schemes were combined to improve the correlation coefficient between machine scores and human scores from 0.651 to 0.679 on the sentence level and from 0.788 to 0.822 on the speaker level.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 863-306-ZD03-01-2)
文摘In this paper we address the problem of audio-visual speech recognition in the framework of the multi-stream hidden Markov model. Stream weight training based on minimum classification error criterion is discussed for use in large vocabulary continuous speech recognition (LVCSR). We present the lattice re- scoring and Viterbi approaches for calculating the loss function of continuous speech. The experimental re- sults show that in the case of clean audio, the system performance can be improved by 36.1% in relative word error rate reduction when using state-based stream weights trained by a Viterbi approach, compared to an audio only speech recognition system. Further experimental results demonstrate that our audio-visual LVCSR system provides significant enhancement of robustness in noisy environments.
基金The work was supported in part by the National Natural Science Foundation of China(Grant No.90920302)the National Key Basic Research Program of China(No.2009CB825404)+2 种基金the HGJ Grant(No.2011ZX01042-001-001)a research program from Microsoft China,and by a GRF grant from the Research Grant Council of Hong Kong SAR(CUHK 4180/10E)Lei XU is also supported by Chang Jiang Scholars Program,Chinese Ministry of Education for Chang Jiang Chair Professorship in Peking University.
文摘This paper presents a new discriminative approach for training Gaussian mixture models(GMMs)of hidden Markov models(HMMs)based acoustic model in a large vocabulary continuous speech recognition(LVCSR)system.This approach is featured by embedding a rival penalized competitive learning(RPCL)mechanism on the level of hidden Markov states.For every input,the correct identity state,called winner and obtained by the Viterbi force alignment,is enhanced to describe this input while its most competitive rival is penalized by de-learning,which makes GMMs-based states become more discriminative.Without the extensive computing burden required by typical discriminative learning methods for one-pass recognition of the training set,the new approach saves computing costs considerably.Experiments show that the proposed method has a good convergence with better performances than the classical maximum likelihood estimation(MLE)based method.Comparing with two conventional discriminative methods,the proposed method demonstrates improved generalization ability,especially when the test set is not well matched with the training set.
文摘To utilize the supra-segmental nature of Mandarin tones, this article proposes a feature extraction method for hidden markov model (HMM) based tone modeling. The method uses linear transforms to project Fo(fundamental frequency) features of neighboring syllables as compensations, and adds them to the original Fo features of the current syUable. The transforms are discriminatively trained by using an objective function termed as "minimum tone error", which is a smooth approximation of tone recognition accuracy. Experiments show that the new tonal features achieve 3.82% tone recognition rate improvement, compared with the baseline, using maximum likelihood trained HMM on the normal F0 features. Further experiments show that discriminative HMM training on the new features is 8.78% better than the baseline.