期刊文献+
共找到4,393篇文章
< 1 2 220 >
每页显示 20 50 100
Simulation and Traffic Safety Assessment of Heavy-Haul Railway Train-Bridge Coupling System under Earthquake Action
1
作者 Liangwei Jiang Wei Zhang +3 位作者 Hongyin Yang Xiucheng Zhang Jinghan Wu Zhangjun Liu 《Structural Durability & Health Monitoring》 EI 2024年第6期835-851,共17页
Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling s... Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification. 展开更多
关键词 train-bridge coupling vibration analysis dynamic response earthquake action traveling wave effect
下载PDF
Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system
2
作者 Jinghu TANG Chaofeng LI +1 位作者 Jin ZHOU Zhiwei WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期873-890,共18页
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a... The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state. 展开更多
关键词 magnetic levitation coupling system self-excited vibration mechanical interface vibration frequency
下载PDF
Seismic safety assessment with non-Gaussian random processes for train-bridge coupled systems
3
作者 Zhao Han Gao Lei +4 位作者 Wei Biao Tan Jincheng Guo Peidong Jiang Lizhong Xiang Ping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期241-260,共20页
Extensive high-speed railway(HSR)network resembled the intricate vascular system of the human body,crisscrossing mainlands.Seismic events,known for their unpredictability,pose a significant threat to both trains and b... Extensive high-speed railway(HSR)network resembled the intricate vascular system of the human body,crisscrossing mainlands.Seismic events,known for their unpredictability,pose a significant threat to both trains and bridges,given the HSR’s extended operational duration.Therefore,ensuring the running safety of train-bridge coupled(TBC)system,primarily composed of simply supported beam bridges,is paramount.Traditional methods like the Monte Carlo method fall short in analyzing this intricate system efficiently.Instead,efficient algorithm like the new point estimate method combined with moment expansion approximation(NPEM-MEA)is applied to study random responses of numerical simulation TBC systems.Validation of the NPEM-MEA’s feasibility is conducted using the Monte Carlo method.Comparative analysis confirms the accuracy and efficiency of the method,with a recommended truncation order of four to six for the NPEM-MEA.Additionally,the influences of seismic magnitude and epicentral distance are discussed based on the random dynamic responses in the TBC system.This methodology not only facilitates seismic safety assessments for TBC systems but also contributes to standard-setting for these systems under earthquake conditions. 展开更多
关键词 train-bridge coupled(TBC)system random vibration new point estimate method(NPEM) seismic safety assessment moment expansion approximation(MEA) non-Gaussian distributions
下载PDF
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
4
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration BRAKING impact factor
下载PDF
A comprehensive review on coupling vibrations of train-bridge systems under external excitations
5
作者 Yongle Li Huoyue Xiang +1 位作者 Zhen Wang Jin Zhu 《Railway Engineering Science》 2022年第3期383-401,共19页
In recent years,high-speed railways in China have developed very rapidly,and the number and span of the railway bridges are keeping increasing.Meanwhile,frequent extreme disasters,such as strong winds,earthquakes and ... In recent years,high-speed railways in China have developed very rapidly,and the number and span of the railway bridges are keeping increasing.Meanwhile,frequent extreme disasters,such as strong winds,earthquakes and floods,pose a significant threat to the safety of the train–bridge systems.Therefore,it is of paramount importance to evaluate the safety and comfort of trains when crossing a bridge under external excitations.In these aspects,there is abundant research but lacks a literature review.Therefore,this paper provides a comprehensive state-of-the-art review of research works on train–bridge systems under external excitations,which includes crosswinds,waves,collision loads and seismic loads.The characteristics of external excitations,the models of the train–bridge systems under external excitations,and the representative research results are summarized and analyzed.Finally,some suggestions for further research of the coupling vibration of train–bridge system under external excitations are presented. 展开更多
关键词 train-bridge system coupling vibration CROSSWIND WAVE Collision loads Seismic load
下载PDF
Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate 被引量:1
6
作者 Xueqian FANG Qilin HE +1 位作者 Hongwei MA Changsong ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1351-1366,共16页
Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechan... Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail. 展开更多
关键词 sandwiched piezoelectric semiconductor(PS)plate functionally-graded layer multi-field coupling free vibration Hamilton's principle
下载PDF
Free Vibration Analysis of Rectangular Plate with Cutouts under Elastic Boundary Conditions in Independent Coordinate Coupling Method
7
作者 Qiuhong Li Wenhao Huang +3 位作者 Joey Sanchez Ping Wang Qiang Ding Jiufa Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2093-2121,共29页
Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved ... Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics. 展开更多
关键词 Rectangular plate with cutouts the independent coordinate coupling method elastic boundary conditions free vibration analysis
下载PDF
Vibration control of pedestrian-bridge vertical dynamic coupling interaction based on biodynamic model 被引量:2
8
作者 朱前坤 李宏男 +1 位作者 南娜娜 杜永峰 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期209-215,共7页
The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different op... The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model. 展开更多
关键词 FOOTBRIDGE vibration serviceability biodynamic dynamic coupling system vibration control
下载PDF
Vibration Reduction by a Partitioned Dynamic Vibration Absorber with Acoustic Black Hole Features 被引量:1
9
作者 Xiaoning Zhao Chaoyan Wang +2 位作者 Hongli Ji Jinhao Qiu Li Cheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期120-134,共15页
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa... Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering. 展开更多
关键词 Acoustic black hole vibration control Dynamic vibration absorber coupling analysis
下载PDF
Analytical modeling of piezoelectric meta-beams with unidirectional circuit for broadband vibration attenuation
10
作者 Jiawei MAO Hao GAO +2 位作者 Junzhe ZHU Penglin GAO Yegao QU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1665-1684,共20页
Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectr... Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance. 展开更多
关键词 broadband vibration attenuation efficient closed-form analytical solution electromechanical coupling piezoelectric material vibration control
下载PDF
Ab initio potential energy surface and anharmonic vibration spectrum of NF_(3)^(+)
11
作者 陈艳南 徐建刚 +3 位作者 范江鹏 马双雄 郭甜 张云光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期327-333,共7页
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction... Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory. 展开更多
关键词 ab initio methods potential energy surfaces vibration frequencies coupled resonance infrared spectra
下载PDF
Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade
12
作者 Zhan Wang Liang Li +3 位作者 Long Wang Weidong Zhu Yinghui Li Echuan Yang 《Energy Engineering》 EI 2024年第10期2981-3000,共20页
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl... Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little. 展开更多
关键词 Pitch motion wind turbine blade inherent rigid-flexible coupling vibration characteristics
下载PDF
Size-dependent thermomechanical vibration characteristics of rotating pre-twisted functionally graded shear deformable microbeams
13
作者 Songye JIN Bo ZHANG +4 位作者 Wuyuan ZHANG Yuxing WANG Huoming SHEN Jing WANG Juan LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1015-1032,共18页
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the... A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC). 展开更多
关键词 thermomechanical vibration rotating pre-twisted functionally graded(FG)microbeam refined shear deformation theory(RSDT) modified couple stress theory(MCST) modal assurance criterion(MAC)
下载PDF
Vibrational resonance in globally coupled bistable systems under the noise background
14
作者 刘江令 李朝润 +1 位作者 高海玲 杜鲁春 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期303-307,共5页
Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR... Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems. 展开更多
关键词 vibrational resonance globally coupled bistable systems power spectral amplification noise
下载PDF
Characteristic of Torsional Vibration of Mill Main Drive Excited by Electromechanical Coupling 被引量:8
15
作者 ZHANG Yifang YAN Xiaoqiang LIN Qihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期180-187,共8页
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec... In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system. 展开更多
关键词 rolling mill vibration current harmonic speed oscillation electromechanical coupling vibration characteristic
下载PDF
Decoupling multimode vibrational relaxations in multi-component gas mixtures: Analysis of sound relaxational absorption spectra 被引量:10
16
作者 张克声 王殊 +2 位作者 朱明 丁毅 胡轶 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期328-337,共10页
Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our pre... Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V-V coupled energy to each vibrationaltranslational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model. 展开更多
关键词 vibrational relaxation sound absorption vibrational-vibrational coupling decoupled singlerelaxation process
下载PDF
Theoretical coupling longitudinal-transverse model and experimental verification of transverse vibration of rope for multi-rope friction hoisting system 被引量:4
17
作者 Juan Wu Ziming Kou 《International Journal of Coal Science & Technology》 EI 2016年第1期77-84,共8页
Using the mass of time-varying length balance rope focused on the hoisting conveyance, the coupling longi- tudinal-transverse model of mine friction hoist was established by using of the Hamilton's principle. The mod... Using the mass of time-varying length balance rope focused on the hoisting conveyance, the coupling longi- tudinal-transverse model of mine friction hoist was established by using of the Hamilton's principle. The modified Galerkin's method was used to discretize partial differential Eqs. The mine hoisting system was used to the example to analysis the relation between the load, velocity and transverse vibration of rope. The in situ tests were illustrated to evaluate the proposed mathematical model. The results showed that the modeling method can well represent the transverse vibration of rope. 展开更多
关键词 Hoisting system vibration ROPE Longitudinal-transverse coupling
下载PDF
VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING 被引量:11
18
作者 LIU Demin LIU Xiaobing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期40-43,共4页
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are ca... The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible. 展开更多
关键词 Fluid-structure coupling Additional quality matrix vibration Mode
下载PDF
Coupling vibration analysis of high-speed maglev train-viaduct systems with control loop failure 被引量:4
19
作者 GUO Wei CHEN Xue-yuan +7 位作者 YE Yi-tao HU Yao LUO Yi-kai SHAO Ping HUANG Ren-qiang WANG Xu-yixin GUO Zhen TAN Sui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2771-2790,共20页
The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train col... The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails. 展开更多
关键词 high-speed maglev train control loop failure coupling vibration maglev control
下载PDF
Response of train-bridge system under intensive seismic excitation by random vibration method 被引量:2
20
作者 WU Zhao-zhi ZHANG Nan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2467-2484,共18页
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t... Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones. 展开更多
关键词 random vibration method intensive seismic excitation train-bridge system probability distribution inter system iteration precise integral method
下载PDF
上一页 1 2 220 下一页 到第
使用帮助 返回顶部