Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network te...Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network technology.The system enhances the foundational model by utilizing Qianfan’s training tools and integrating advanced techniques,such as supervised fine-tuning.In the data preparation phase,a comprehensive collection of subjective data related to computer network technology is gathered,cleaned,and labeled.During model training and evaluation,optimal hyperparameters and tuning strategies are applied,resulting in a model capable of scoring with high accuracy.Evaluation results demonstrate that the proposed model performs well across multiple dimensions-content,expression,and development scores-yielding results comparable to those of manual scoring.展开更多
Background The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC MentorTM is designed to train the user in...Background The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC MentorTM is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Methods Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC MentorTM after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. Results During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P=0.03 and 0.02, respectively). Conclusions The training on the virtual reality simulator, PERC MentorTM, can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.展开更多
文摘Leveraging the Baidu Qianfan model platform,this paper designs and implements a highly efficient and accurate scoring system for subjective questions,focusing primarily on questions in the field of computer network technology.The system enhances the foundational model by utilizing Qianfan’s training tools and integrating advanced techniques,such as supervised fine-tuning.In the data preparation phase,a comprehensive collection of subjective data related to computer network technology is gathered,cleaned,and labeled.During model training and evaluation,optimal hyperparameters and tuning strategies are applied,resulting in a model capable of scoring with high accuracy.Evaluation results demonstrate that the proposed model performs well across multiple dimensions-content,expression,and development scores-yielding results comparable to those of manual scoring.
文摘Background The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC MentorTM is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Methods Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC MentorTM after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. Results During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P=0.03 and 0.02, respectively). Conclusions The training on the virtual reality simulator, PERC MentorTM, can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.