In this paper, a novel algorithm based on disturbed fluid and trajectory propagation is developed to solve the three-dimensional(3-D) path planning problem of unmanned aerial vehicle(UAV) in static environment.Fir...In this paper, a novel algorithm based on disturbed fluid and trajectory propagation is developed to solve the three-dimensional(3-D) path planning problem of unmanned aerial vehicle(UAV) in static environment.Firstly, inspired by the phenomenon of streamlines avoiding obstacles, the algorithm based on disturbed fluid is developed and broadened.The effect of obstacles on original fluid field is quantified by the perturbation matrix, where the tangential matrix is first introduced.By modifying the original flow field, the modified one is then obtained, where the streamlines can be regarded as planned paths.And the path proves to avoid all obstacles smoothly and swiftly, follow the shape of obstacles effectively and reach the destination eventually.Then, by considering the kinematics and dynamics equations of UAV, the method called trajectory propagation is adopted to judge the feasibility of the path.If the planned path is unfeasible, repulsive and tangential parameters in the perturbation matrix will be adjusted adaptively based on the resolved state variables of UAV.In most cases, a flyable path can be obtained eventually.Simulation results demonstrate the effectiveness of this method.展开更多
The classic polynomial chaos method(PCM), characterized as an intrusive methodology,has been applied to uncertainty propagation(UP) in many dynamic systems. However, the intrusive polynomial chaos method(IPCM) r...The classic polynomial chaos method(PCM), characterized as an intrusive methodology,has been applied to uncertainty propagation(UP) in many dynamic systems. However, the intrusive polynomial chaos method(IPCM) requires tedious modification of the governing equations, which might introduce errors and can be impractical. Alternative to IPCM, the non-intrusive polynomial chaos method(NIPCM) that avoids such modifications has been developed. In spite of the frequent application to dynamic problems, almost all the existing works about NIPCM for dynamic UP fail to elaborate the implementation process in a straightforward way, which is important to readers who are unfamiliar with the mathematics of the polynomial chaos theory. Meanwhile, very few works have compared NIPCM to IPCM in terms of their merits and applicability. Therefore, the mathematic procedure of dynamic UP via both methods considering parametric and initial condition uncertainties are comparatively discussed and studied in the present paper. Comparison of accuracy and efficiency in statistic moment estimation is made by applying the two methods to several dynamic UP problems. The relative merits of both approaches are discussed and summarized. The detailed description and insights gained with the two methods through this work are expected to be helpful to engineering designers in solving dynamic UP problems.展开更多
基金supported by the National Natural Science Foundation of China (No.61175084)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No.IRT13004)
文摘In this paper, a novel algorithm based on disturbed fluid and trajectory propagation is developed to solve the three-dimensional(3-D) path planning problem of unmanned aerial vehicle(UAV) in static environment.Firstly, inspired by the phenomenon of streamlines avoiding obstacles, the algorithm based on disturbed fluid is developed and broadened.The effect of obstacles on original fluid field is quantified by the perturbation matrix, where the tangential matrix is first introduced.By modifying the original flow field, the modified one is then obtained, where the streamlines can be regarded as planned paths.And the path proves to avoid all obstacles smoothly and swiftly, follow the shape of obstacles effectively and reach the destination eventually.Then, by considering the kinematics and dynamics equations of UAV, the method called trajectory propagation is adopted to judge the feasibility of the path.If the planned path is unfeasible, repulsive and tangential parameters in the perturbation matrix will be adjusted adaptively based on the resolved state variables of UAV.In most cases, a flyable path can be obtained eventually.Simulation results demonstrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China (No. 51105034)the Doctoral Thesis Build Project of Beijing 2012 (China)
文摘The classic polynomial chaos method(PCM), characterized as an intrusive methodology,has been applied to uncertainty propagation(UP) in many dynamic systems. However, the intrusive polynomial chaos method(IPCM) requires tedious modification of the governing equations, which might introduce errors and can be impractical. Alternative to IPCM, the non-intrusive polynomial chaos method(NIPCM) that avoids such modifications has been developed. In spite of the frequent application to dynamic problems, almost all the existing works about NIPCM for dynamic UP fail to elaborate the implementation process in a straightforward way, which is important to readers who are unfamiliar with the mathematics of the polynomial chaos theory. Meanwhile, very few works have compared NIPCM to IPCM in terms of their merits and applicability. Therefore, the mathematic procedure of dynamic UP via both methods considering parametric and initial condition uncertainties are comparatively discussed and studied in the present paper. Comparison of accuracy and efficiency in statistic moment estimation is made by applying the two methods to several dynamic UP problems. The relative merits of both approaches are discussed and summarized. The detailed description and insights gained with the two methods through this work are expected to be helpful to engineering designers in solving dynamic UP problems.