Schwann cell proliferation,migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury.Lithium promotes remyelination by Schwann cells and improves peripheral ne...Schwann cell proliferation,migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury.Lithium promotes remyelination by Schwann cells and improves peripheral nerve regeneration.However,whether lithium modulates other phenotypes of Schwann cells,especially their proliferation and migration remains elusive.In the current study,primary Schwann cells from rat sciatic nerve stumps were cultured and exposed to 0,5,10,15,or 30 mM lithium chloride(LiCl)for 24 hours.The effects of LiCl on Schwann cell proliferation and migration were examined using the Cell Counting Kit-8,5-ethynyl-2′-deoxyuridine,Transwell and wound healing assays.Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine assays showed that 5,10,15,and 30 mM LiCl significantly increased the viability and proliferation rate of Schwann cells.Transwell-based migration assays and wound healing assays showed that 10,15,and 30 mM LiCl suppressed the migratory ability of Schwann cells.Furthermore,the effects of LiCl on the proliferation and migration phenotypes of Schwann cells were mostly dose-dependent.These data indicate that lithium treatment significantly promotes the proliferation and inhibits the migratory ability of Schwann cells.This conclusion will inform strategies to promote the repair and regeneration of peripheral nerves.All of the animal experiments in this study were ethically approved by the Administration Committee of Experimental Animal Center of Nantong University,China(approval No.20170320-017)on March 2,2017.展开更多
Rho-associated kinase(ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system.Our previous studies showed that ROCK inhibition enhances phagocytic activity in ...Rho-associated kinase(ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system.Our previous studies showed that ROCK inhibition enhances phagocytic activity in microglia through the extracellular signal-regulated kinase(ERK) signaling pathway,but its effect on microglial migration was unknown.Therefore,in this study,we investigated the effects of the ROCK inhibitors Y27632 and fasudil on the migratory activity of primary cultured microglia isolated from the spinal cord,and we examined the underlying mechanisms.The microglia were treated with Y27632,fasudil and/or the ERK inhibitor U0126.Cellular morphology was observed by immunofluorescence.Transwell chambers were used to assess cell migration.ERK levels were measured by incell western blot assay.Y27632 and fasudil increased microglial migration,and the microglia were irregularly shaped and had many small processes.These inhibitors also upregulated the levels of phosphorylated ERK protein.The ERK inhibitor U0126 suppressed these effects of Y27632 and fasudil.These findings suggest that the ROCK inhibitors Y27632 and fasudil promote microglial migration in the spinal cord through the ERK signaling pathway.展开更多
[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted...[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted microscope observation,hoechst33342 staining,flow cytometry(FCM)and wound healing assay were adopted to investigate the proliferation,morphological changes,apoptosis level and cell migration ability of human breast cancer MCF-7 cells,respectively.[Results]The morphological changes of cells in the treatment groups included gradually decreased number,reduced volume,vague cell contour,loose intercellular connection,uneven cytoplasm distribution and increased cell debris.With the increase of drug concentration,quercetin significantly inhibited the proliferation of human breast cancer MCF-7 cells(P<0.05).The number of apoptotic bodies increased gradually.When the concentration reached 100μmol/L,a large number of nuclear fragments appeared,and the level of apoptosis was statistically different(P<0.05).The mobility and migration ability of cells showed a decreasing trend,and the differences were statistically significant(P<0.05).[Conclusions]This study can provide experimental basis for clinical application of quercetin against breast cancer.展开更多
In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein...In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.展开更多
Natural products include several diverse compounds that have been found to be effective against cancer.Discovering anticancer compounds in nature is a multistep and complex process that requires pre-clinical and clini...Natural products include several diverse compounds that have been found to be effective against cancer.Discovering anticancer compounds in nature is a multistep and complex process that requires pre-clinical and clinical studies.Only a few of the available natural products are used to treat cancer since most of them have very high complexity and low bioavailability.Therefore,the process of anticancer drug discovery requires a straightforward and effective method to assess anticancer activity using in vitro assays.This review summarizes various cell-based assays and techniques used to measure cell viability,migration,and apoptosis,focusing in particular on the principles,mechanisms,advantages,and disadvantages of each assay to provide a preliminary platform for cancer drug discovery.展开更多
Objective:In this study,we aimed to explore the expression of TUSC3 in Preeclampsia and to research the potential function of TUSC3 in placental trophoblast cells.Methods:We collected 10 cases of normal placental tiss...Objective:In this study,we aimed to explore the expression of TUSC3 in Preeclampsia and to research the potential function of TUSC3 in placental trophoblast cells.Methods:We collected 10 cases of normal placental tissues and preeclampsia placental tissues,respectively.These parturient received treatment at the First Affiliated Hospital of Hainan Medical University between June 1,2020,and December 31,2022.The expression of TUSC3 in placenta was detected by immunohistochemistry.The effect of TUSC3 on the migration and invasion of HTR8/SVneo cells was analyzed by migration assay and Transwell assay.Results:The expression of TUSC3 was slightly increased in placental villis in preeclampsia.Immunohistochemistry and qRT-PCR were used to detect the expression of TUSC3 protein and mRNA in placental tissues.TUSC3 was markedly upregulated in PE placental tissues(P<0.01).The results of migration assay and Transwell assay showed that the migration rate and the number of invasive cells were significantly decreased in HTR8 overexpressing TUSC3(P<0.01).Conclusions:TUSC3 was markedly increased in PE placental tissues and inhibited trophoblast cells migration and invasion.展开更多
A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell mi...A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell migration including scratch assay and transwell migration assay possess all kinds of limitations.In this study, a novel honeycomb cell assay kit was designed and made of photosensitive resin by 3D printing. This kit has seven hexagonal culture chambers so that it can evaluate the horizontal cell migration behavior in response to six surrounding environments simultaneously, eliminating the effect of gravity on cells. Here this cell assay kit was successfully applied to evaluate endothelial cell migration cultured on self-assembling peptide (SAP) RADA (AcN-RADARADARADARADA-CONH2) nanofiber hydrogel toward different functionalized SAP hydrogels. Our results indicated that the functionalized RADA hydrogels with different concentration of bioactive motifs of KLT or PRG could induce cell migration in a dose-dependent manner. The total number and migration distance of endothelial cells on functionalized SAP hydrogels significantly increased with increasing concentration of bioactive motif PRG or KLT. Therefore, the honeycomb cell assay kit provides a simple, efficient and convenient tool to investigate cell migration behavior in response to multi-environments simultaneously.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is the fourth leading cause of death among cancers,it is characterized by poor prognosis and strong chemoresistance.In the PDAC microenvironment,stromal cells release d...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is the fourth leading cause of death among cancers,it is characterized by poor prognosis and strong chemoresistance.In the PDAC microenvironment,stromal cells release different extracellular components,including CXCL12.The CXCL12 is a chemokine promoting the communication between tumour and stromal cells.Six different splicing isoforms of CXCL12 are known(α,β,γ,δ,ε,θ)but their role in PDAC has not yet been characterized.AIM To investigate the specific role ofα,β,andγCXCL12 isoforms in PDAC onset.METHODS We used hTERT-HPNE E6/E7/KRasG12D(Human Pancreatic Nestin-Expressing)cell line as a pancreatic pre-tumour model and exposed it to theα,β,andγCXCL12 isoforms.The altered expression profiles were assessed by microarray analyses and confirmed by Real-Time polymerase chain reaction.The functional enrichment analyses have been performed by Enrichr tool to highlight Gene Ontology enriched terms.In addition,wound healing assays have been carried out to assess the phenotypic changes,in terms of migration ability,induced by theα,β,andγCXCL12 isoforms.RESULTS Microarray analysis of hTERT-HPNE cells treated with the three different CXCL12 isoforms highlighted that the expression of only a few genes was altered.Moreover,theαandβisoforms showed an alteration in expression of different genes,whereasγisoform affected the expression of genes also common withαandβisoforms.Theβisoform altered the expression of genes mainly involved in cell cycle regulation.In addition,all isoforms affected the expression of genes assay confirmed that CXCL12 enhanced the migration ability of hTERT-HPNE cells.Among the CXCL12 splicing isoforms,theγisoform showed higher induction of migration thanαandβisoforms.CONCLUSION Our data suggests an involvement and different roles of CXCL12 isoforms in PDAC onset.However,more investigations are needed to confirm these preliminary observations.展开更多
Lung cancer is the leading cause of cancer related death in the United States killing over 130,000 people each year. While a combination of chemo and radiation therapy may be effective, surgery is still required for m...Lung cancer is the leading cause of cancer related death in the United States killing over 130,000 people each year. While a combination of chemo and radiation therapy may be effective, surgery is still required for many patients. Without surgery, the disease may progress and lead to metastases. We sought to determine if treatment with anti-non-muscle myosin IIA antibody would inhibit movement of the cells in the presence and absence of glabridin (an isoflavonoid compound shown to inhibit cell migration by inhibiting myosin). We compared inhibition by glabridin to that of an anti-non-muscle myosin IIA antibody and a combination therapy of both at 12 and 24 hours post wound creation. Cells that took up the anti-non-muscle myosin IIA antibody were greatly inhibited in motility and exhibited no significant change in wound healing. Glabridin treatment resulted in a dramatic increase in wound size within 12 hours and regeneration within 24 hours. The greatest decrease in motility was observed in cells treated with the combination of both glabridin and anti-non-muscle myosin IIA antibody. By 24 hrs, cell migration had halted due to death of the cells resulting from this combination. Further testing needs to be done to determine a safe mode of delivery of the combination therapy to ensure only local distribution. Controlled release drug delivery depot systems have been used as a means to provide local release of drugs intra-tumorally or adjacent to the cancerous tissue after surgical resection and have great potential.展开更多
Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and diff...Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra- tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cmz, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 x 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes cells, thereby enhancing the contribution ic-ischemic brain damage. the migration of bone marrow mesenchymal stem of cell transplantation in the treatment of hypox-展开更多
基金supported by the National Natural Science Foundation of China,No.81970820(to HX)
文摘Schwann cell proliferation,migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury.Lithium promotes remyelination by Schwann cells and improves peripheral nerve regeneration.However,whether lithium modulates other phenotypes of Schwann cells,especially their proliferation and migration remains elusive.In the current study,primary Schwann cells from rat sciatic nerve stumps were cultured and exposed to 0,5,10,15,or 30 mM lithium chloride(LiCl)for 24 hours.The effects of LiCl on Schwann cell proliferation and migration were examined using the Cell Counting Kit-8,5-ethynyl-2′-deoxyuridine,Transwell and wound healing assays.Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine assays showed that 5,10,15,and 30 mM LiCl significantly increased the viability and proliferation rate of Schwann cells.Transwell-based migration assays and wound healing assays showed that 10,15,and 30 mM LiCl suppressed the migratory ability of Schwann cells.Furthermore,the effects of LiCl on the proliferation and migration phenotypes of Schwann cells were mostly dose-dependent.These data indicate that lithium treatment significantly promotes the proliferation and inhibits the migratory ability of Schwann cells.This conclusion will inform strategies to promote the repair and regeneration of peripheral nerves.All of the animal experiments in this study were ethically approved by the Administration Committee of Experimental Animal Center of Nantong University,China(approval No.20170320-017)on March 2,2017.
基金supported by the National Natural Science Foundation of China,No.81471200,81771341
文摘Rho-associated kinase(ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system.Our previous studies showed that ROCK inhibition enhances phagocytic activity in microglia through the extracellular signal-regulated kinase(ERK) signaling pathway,but its effect on microglial migration was unknown.Therefore,in this study,we investigated the effects of the ROCK inhibitors Y27632 and fasudil on the migratory activity of primary cultured microglia isolated from the spinal cord,and we examined the underlying mechanisms.The microglia were treated with Y27632,fasudil and/or the ERK inhibitor U0126.Cellular morphology was observed by immunofluorescence.Transwell chambers were used to assess cell migration.ERK levels were measured by incell western blot assay.Y27632 and fasudil increased microglial migration,and the microglia were irregularly shaped and had many small processes.These inhibitors also upregulated the levels of phosphorylated ERK protein.The ERK inhibitor U0126 suppressed these effects of Y27632 and fasudil.These findings suggest that the ROCK inhibitors Y27632 and fasudil promote microglial migration in the spinal cord through the ERK signaling pathway.
基金Guilin Scientific Research and Technology Development Program(20210202-120220104-4)Special Project of the Central Government in Guidance of Local Science and Technology Development(ZY20230102).
文摘[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted microscope observation,hoechst33342 staining,flow cytometry(FCM)and wound healing assay were adopted to investigate the proliferation,morphological changes,apoptosis level and cell migration ability of human breast cancer MCF-7 cells,respectively.[Results]The morphological changes of cells in the treatment groups included gradually decreased number,reduced volume,vague cell contour,loose intercellular connection,uneven cytoplasm distribution and increased cell debris.With the increase of drug concentration,quercetin significantly inhibited the proliferation of human breast cancer MCF-7 cells(P<0.05).The number of apoptotic bodies increased gradually.When the concentration reached 100μmol/L,a large number of nuclear fragments appeared,and the level of apoptosis was statistically different(P<0.05).The mobility and migration ability of cells showed a decreasing trend,and the differences were statistically significant(P<0.05).[Conclusions]This study can provide experimental basis for clinical application of quercetin against breast cancer.
文摘In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.
基金supported by the Internal Research Grant of Sanata Dharma University No.007/Penel./LPPM-USD/II/2022.
文摘Natural products include several diverse compounds that have been found to be effective against cancer.Discovering anticancer compounds in nature is a multistep and complex process that requires pre-clinical and clinical studies.Only a few of the available natural products are used to treat cancer since most of them have very high complexity and low bioavailability.Therefore,the process of anticancer drug discovery requires a straightforward and effective method to assess anticancer activity using in vitro assays.This review summarizes various cell-based assays and techniques used to measure cell viability,migration,and apoptosis,focusing in particular on the principles,mechanisms,advantages,and disadvantages of each assay to provide a preliminary platform for cancer drug discovery.
基金Hainan Natural Science Foundation project(822MS175)National Nature Science Foundation of China(No.82072880,82003144,81960283,82201874)+1 种基金Supported by the Specific Research Fund of the Innovation Platform for Academicians of Hainan ProvinceProject supported by Hainan Province Clinical Medical Center。
文摘Objective:In this study,we aimed to explore the expression of TUSC3 in Preeclampsia and to research the potential function of TUSC3 in placental trophoblast cells.Methods:We collected 10 cases of normal placental tissues and preeclampsia placental tissues,respectively.These parturient received treatment at the First Affiliated Hospital of Hainan Medical University between June 1,2020,and December 31,2022.The expression of TUSC3 in placenta was detected by immunohistochemistry.The effect of TUSC3 on the migration and invasion of HTR8/SVneo cells was analyzed by migration assay and Transwell assay.Results:The expression of TUSC3 was slightly increased in placental villis in preeclampsia.Immunohistochemistry and qRT-PCR were used to detect the expression of TUSC3 protein and mRNA in placental tissues.TUSC3 was markedly upregulated in PE placental tissues(P<0.01).The results of migration assay and Transwell assay showed that the migration rate and the number of invasive cells were significantly decreased in HTR8 overexpressing TUSC3(P<0.01).Conclusions:TUSC3 was markedly increased in PE placental tissues and inhibited trophoblast cells migration and invasion.
基金This research was supported by the National Natural Science Foundation of China (Grant Nos. 51572144 and 21371106) and the Tsinghua University Initiative Scientific Research Program (Grant No. 20161080091).
文摘A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell migration including scratch assay and transwell migration assay possess all kinds of limitations.In this study, a novel honeycomb cell assay kit was designed and made of photosensitive resin by 3D printing. This kit has seven hexagonal culture chambers so that it can evaluate the horizontal cell migration behavior in response to six surrounding environments simultaneously, eliminating the effect of gravity on cells. Here this cell assay kit was successfully applied to evaluate endothelial cell migration cultured on self-assembling peptide (SAP) RADA (AcN-RADARADARADARADA-CONH2) nanofiber hydrogel toward different functionalized SAP hydrogels. Our results indicated that the functionalized RADA hydrogels with different concentration of bioactive motifs of KLT or PRG could induce cell migration in a dose-dependent manner. The total number and migration distance of endothelial cells on functionalized SAP hydrogels significantly increased with increasing concentration of bioactive motif PRG or KLT. Therefore, the honeycomb cell assay kit provides a simple, efficient and convenient tool to investigate cell migration behavior in response to multi-environments simultaneously.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is the fourth leading cause of death among cancers,it is characterized by poor prognosis and strong chemoresistance.In the PDAC microenvironment,stromal cells release different extracellular components,including CXCL12.The CXCL12 is a chemokine promoting the communication between tumour and stromal cells.Six different splicing isoforms of CXCL12 are known(α,β,γ,δ,ε,θ)but their role in PDAC has not yet been characterized.AIM To investigate the specific role ofα,β,andγCXCL12 isoforms in PDAC onset.METHODS We used hTERT-HPNE E6/E7/KRasG12D(Human Pancreatic Nestin-Expressing)cell line as a pancreatic pre-tumour model and exposed it to theα,β,andγCXCL12 isoforms.The altered expression profiles were assessed by microarray analyses and confirmed by Real-Time polymerase chain reaction.The functional enrichment analyses have been performed by Enrichr tool to highlight Gene Ontology enriched terms.In addition,wound healing assays have been carried out to assess the phenotypic changes,in terms of migration ability,induced by theα,β,andγCXCL12 isoforms.RESULTS Microarray analysis of hTERT-HPNE cells treated with the three different CXCL12 isoforms highlighted that the expression of only a few genes was altered.Moreover,theαandβisoforms showed an alteration in expression of different genes,whereasγisoform affected the expression of genes also common withαandβisoforms.Theβisoform altered the expression of genes mainly involved in cell cycle regulation.In addition,all isoforms affected the expression of genes assay confirmed that CXCL12 enhanced the migration ability of hTERT-HPNE cells.Among the CXCL12 splicing isoforms,theγisoform showed higher induction of migration thanαandβisoforms.CONCLUSION Our data suggests an involvement and different roles of CXCL12 isoforms in PDAC onset.However,more investigations are needed to confirm these preliminary observations.
文摘Lung cancer is the leading cause of cancer related death in the United States killing over 130,000 people each year. While a combination of chemo and radiation therapy may be effective, surgery is still required for many patients. Without surgery, the disease may progress and lead to metastases. We sought to determine if treatment with anti-non-muscle myosin IIA antibody would inhibit movement of the cells in the presence and absence of glabridin (an isoflavonoid compound shown to inhibit cell migration by inhibiting myosin). We compared inhibition by glabridin to that of an anti-non-muscle myosin IIA antibody and a combination therapy of both at 12 and 24 hours post wound creation. Cells that took up the anti-non-muscle myosin IIA antibody were greatly inhibited in motility and exhibited no significant change in wound healing. Glabridin treatment resulted in a dramatic increase in wound size within 12 hours and regeneration within 24 hours. The greatest decrease in motility was observed in cells treated with the combination of both glabridin and anti-non-muscle myosin IIA antibody. By 24 hrs, cell migration had halted due to death of the cells resulting from this combination. Further testing needs to be done to determine a safe mode of delivery of the combination therapy to ensure only local distribution. Controlled release drug delivery depot systems have been used as a means to provide local release of drugs intra-tumorally or adjacent to the cancerous tissue after surgical resection and have great potential.
基金the National Natural Science Foundation of China,No.30970758,31271060the National Science and Technology Support Program of China,No.2011BAI14B04,2012BAI16B02the Natural Science Foundation of Chongqing in China,No.cst-c2012jjA10103
文摘Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra- tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cmz, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 x 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes cells, thereby enhancing the contribution ic-ischemic brain damage. the migration of bone marrow mesenchymal stem of cell transplantation in the treatment of hypox-