AIM:To compare the safety and efficacy of conventional versus accelerated(9 mW/cm^2)corneal collagen crosslinking(CXL)in progressive keratoconus at the 2-year follow-up.METHODS:In this prospective study,consecutive pr...AIM:To compare the safety and efficacy of conventional versus accelerated(9 mW/cm^2)corneal collagen crosslinking(CXL)in progressive keratoconus at the 2-year follow-up.METHODS:In this prospective study,consecutive progressive keratoconus patients were randomized to receive either conventional CXL(CCXL)or accelerated CXL(ACXL;using hydroxypropyl methylcellulose-assisted riboflavin imbibition for 10 min at 9 mW/cm^2).Visual,refractive,keratometric,topographic,and aberrometric outcomes and stromal demarcation line depth(DLD)measurements were compared at the end of a 2-year follow-up.RESULTS:Thirty-two eyes from 32 patients in the CCXL and 27 eyes from 27 patients in the ACXL groups completed 2-year follow-up.At 2y post-CXL,both uncorrected and corrected visual acuities improved significantly in both groups.The improvements in keratometric readings,flattening rate(flattening of the maximum keratometry more than 1 D),3 topographic indices,and vertical coma were significantly better in the CCXL group compared to the ACXL group(P<0.05).The DLD as measured by anterior segment optical coherence tomography or in vivo confocal microscopy was better detectable and significantly deeper in the CCXL group compared to the ACXL group.The deeper DLD was found to be significantly correlated with improvements in the mean keratometry measurements.Progression was noted in 11.1%of eyes in the ACXL group,whereas progression was not observed in any patient eye in the CCXL group.CONCLUSION:In this prospective randomized study,ACXL is less effective in halting the progression of keratoconus at a 2-year follow-up compared to CCXL.展开更多
The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in i...The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in improving physiochemical and biological properties of native collagen sponge (Control group). Modified collagen sponge overcome the disadvantages of native collagen sponge. IR spectra suggest the change of the functional groups. DSC data indicate that the stability of caloric transformation in EDC/NHS group is slightly higher than that of EDC/NHS-Heparin group. The crosslinking degree, stability against enzymes, stability in morphologically and biomechanical properties of EDC/NHS-Heparin group are higher than those of EDC/NHS group, whereas, the water-binding capacity in EDC/NHS-Heparin group is lower than that of EDC/NHS group. HUVECs in EDC/NHS-Heparin group scaffold proliferate fast, migrate well and distribute uniformly. One-step simultaneous method gains the better effects in above aspects, heparinized collagen matrices increase in angiogenic potential and suit for defect repairing and tissue engineering.展开更多
AIM:To evaluate the effect of posterior sclera collagen cross-linking induced by riboflavin-ultraviolet A(UVA)on form-deprived myopia in guinea pigs.METHODES:Twenty-five pigmented guinea pigs of 3-week-old were random...AIM:To evaluate the effect of posterior sclera collagen cross-linking induced by riboflavin-ultraviolet A(UVA)on form-deprived myopia in guinea pigs.METHODES:Twenty-five pigmented guinea pigs of 3-week-old were randomly assigned into 4 groups that included normal control(NOR,n=7),form-deprived(FDM,n=7),normal with riboflavin-UVA cross-linking(NOR+CL,n=5)and form-deprived with cross-linking(FDM+CL,n=6).The NOR+CL group and the FDM+CL group received the riboflavin-UVA induced cross-linking at day 0.FDM was induced by monocularly deprived with facemask in the right eyes.The refraction,axial length and corneal curvature were measured by retinoscopy,A-scan and keratometer respectively in scheduled time points(day 0 and 1,2,3,4 wk after form-deprivation).At the end of 4 weeks’experiment,stress-strain tests of sclera were measured and morphological changes of sclera and retina were examined.RESULTS:After 4 wk,the interocular difference of refractive error were-0.11±0.67,-2.93±0.56,1.10±0.58,and-1.63±0.41 D in the NOR,FDM,NOR+CL,and FDM+CL groups respectively.Mixed-effect linear model revealed significant effect of FDM(P<0.01)and CL(P<0.001).Also,after 4 wk,the interocular difference of axial length were 0.01±0.04,0.29±0.07,-0.13±0.06,and 0.11±0.05 mm in the NOR,FDM,NOR+CL,and FDM+CL group.Mixedeffect linear model revealed significant effect of FDM(P<0.001)and CL(P<0.01).As for corneal curvature,significant interocular difference have not found between any of the two groups.At the end of this experiment,the ultimate stress and elastic modulus were found significantly increased in both CL groups.But no difference was found in the groups without cross-linked.There was no abnormality observed in the retina and RPE cells of the treated eyes.CONCLUSION:The posterior sclera collagen crosslinking induced by riboflavin-UVA can slow down the progress of myopia and increase the sclera biomechanical strength in the guinea pig model of form-deprived myopia.展开更多
<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a sp...<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a spongy sheet composed of hyaluronic acid (HA) and collagen (Col). The spongy sheets were manufactured by freeze vacuum drying of HA and Col aqueous solution, followed by UV irradiation to introduce intermolecular crosslinks between Col molecules. These spongy sheets are referred to as Sponge-A (ratio of HA/Col = 5/1) and Sponge-B (ratio of HA/Col = 5/5). Both surfaces of Sponge-A and Sponge-B treated with UV irradiation for 15 minutes are referred to as Sponge-A-15 and Sponge-B-15, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of sponge-A-15 collected 1/2, 1, 3, 7 days after immersion in water was 63.5%, 62.1%, 56.6%, 54.4% of the original weight, respectively. The weight of Sponge-B-15 was 78.3%, 76.7%, 79.1%, 71.9% of the original weight, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water containing collagenase at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of Sponge-A-15 collected 6, 8, 10, 12 hours after immersion in water containing collagenase (0.0005</span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">w/v%) was 65.7%, 59.8%, 57.9%, 55.2% of the original weight, respectively. The weight of Sponge-B-15 was 63.5%, 52.1%, 42.0%, 43.2% of the original weight, respectively. This spongy sheet is considered to have the unique structure, where HA molecules are entrapped in an intermolecular cross-linked network structure of Col molecules. When immersed in water containing collagenase, the weight loss of spongy sheet is accelerated by easy extraction of HA molecules from the enzymatic degraded Col network structure. The performance of wound dressing and tissue anti-adhesive product is considered to depend on appropriate ratio of HA and Col, and also on appropriate rate of intermolecular crosslinks between Col molecules. These findings obtained in this study provide useful information for product development such as wound dressing and tissue anti-adhesive product.展开更多
AIMTo present the results of same-day topography-guided photorefractive keratectomy (TG-PRK) and corneal collagen crosslinking (CXL) after previous intrastromal corneal ring segment (ISCR) implantation for keratoconus.
Because of the excellent biocompatibility and its specific amino sequences,collagen is an ideal biomedical material for tissue engineering applications. But collagen is usually lack of mechanical strength to form a ri...Because of the excellent biocompatibility and its specific amino sequences,collagen is an ideal biomedical material for tissue engineering applications. But collagen is usually lack of mechanical strength to form a rigid 3-D matrix and lack of ability to resist collagenase. In order to be a tissue engineering scaffold,collagen must strengthen its structures by modifying with chemical crosslinkers. Chemical crosslinkers used for modifying collagen fibers include glutaraldehyde(GA),epoxy compounds(PC) and carbodiimides (EDC). The aim of this study is to choose the best chemical crosslinker from the three reagents. In terms of the resistance to collagenase degradation,chemical cross-linking with PC provided the best protection; in terms of the mechanical characterization,chemical cross-linking with GA provided the best;and in terms of the biocompatibility,chemical cross-linking with EDC provided the best.There is not a reagent which has all merits for collagen crosslinking,so we should select the crosslinking reagent as the demands of use ask.展开更多
Tissue engineering response may be tailored via controlled,sustained release of active agents from protein-loaded degradable microparticles incorporated directly within three-dimensional(3D)ice-templated collagen scaf...Tissue engineering response may be tailored via controlled,sustained release of active agents from protein-loaded degradable microparticles incorporated directly within three-dimensional(3D)ice-templated collagen scaffolds.However,the effects of covalent crosslinking during scaffold preparation on the availability and release of protein from the incorporated microparticles have not been explored.Here,we load 3D ice-templated collagen scaffolds with controlled additions of poly-(DL-lactide-co-glycolide)microparticles.We probe the effects of subsequent N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride crosslinking on protein release,using microparticles with different internal protein distributions.Fluorescein isothiocyanate labelled bovine serum albumin is used as a model protein drug.The scaffolds display a homogeneous microparticle distribution,and a reduction in pore size and percolation diameter with increased microparticle addition,although these values did not fall below those reported as necessary for cell invasion.The protein distribution within the microparticles,near the surface or more deeply located within the microparticles,was important in determining the release profile and effect of crosslinking,as the surface was affected by the carbodiimide crosslinking reaction applied to the scaffold.Crosslinking of microparticles with a high proportion of protein at the surface caused both a reduction and delay in protein release.Protein located within the bulk of the microparticles,was protected from the crosslinking reaction and no delay in the overall release profile was seen.展开更多
Riboflavin/UV-mediated corneal collagen cross-linking can increase the mechanical strength of the cornea and prevent or delay corneal expansion and keratoconus progression.We performed quantitative analysis of protein...Riboflavin/UV-mediated corneal collagen cross-linking can increase the mechanical strength of the cornea and prevent or delay corneal expansion and keratoconus progression.We performed quantitative analysis of protein iTRAQ in rabbit eye white matter after cross-linking to explore the changes of protein expression in cornea at different times after cross-linking and to understand the process of corneal stroma remodeling after cross-linking.The screening conditions are fold Change1.2 and P-value<0.05,we identified 713 and 38 differentially expressed proteins in cornea at 1 week and 1 month after cross-linking.There were 16 differentially expressed proteins at two time points after corneal cross-linking.By annotating the functions of these proteins,we identified some proteins that affect the mechanical properties of the cornea,and these proteins are involved in cell growth,oxidative stress response,and signal transduction in the cornea.It has a guiding role in studying the corneal stroma remodeling process after collagen crosslinking.展开更多
文摘AIM:To compare the safety and efficacy of conventional versus accelerated(9 mW/cm^2)corneal collagen crosslinking(CXL)in progressive keratoconus at the 2-year follow-up.METHODS:In this prospective study,consecutive progressive keratoconus patients were randomized to receive either conventional CXL(CCXL)or accelerated CXL(ACXL;using hydroxypropyl methylcellulose-assisted riboflavin imbibition for 10 min at 9 mW/cm^2).Visual,refractive,keratometric,topographic,and aberrometric outcomes and stromal demarcation line depth(DLD)measurements were compared at the end of a 2-year follow-up.RESULTS:Thirty-two eyes from 32 patients in the CCXL and 27 eyes from 27 patients in the ACXL groups completed 2-year follow-up.At 2y post-CXL,both uncorrected and corrected visual acuities improved significantly in both groups.The improvements in keratometric readings,flattening rate(flattening of the maximum keratometry more than 1 D),3 topographic indices,and vertical coma were significantly better in the CCXL group compared to the ACXL group(P<0.05).The DLD as measured by anterior segment optical coherence tomography or in vivo confocal microscopy was better detectable and significantly deeper in the CCXL group compared to the ACXL group.The deeper DLD was found to be significantly correlated with improvements in the mean keratometry measurements.Progression was noted in 11.1%of eyes in the ACXL group,whereas progression was not observed in any patient eye in the CCXL group.CONCLUSION:In this prospective randomized study,ACXL is less effective in halting the progression of keratoconus at a 2-year follow-up compared to CCXL.
基金Funded by the National Natural Science Foundation of China (10832012)the Natural Science Foudation of Tianjin city(08JCYBJC03400)
文摘The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in improving physiochemical and biological properties of native collagen sponge (Control group). Modified collagen sponge overcome the disadvantages of native collagen sponge. IR spectra suggest the change of the functional groups. DSC data indicate that the stability of caloric transformation in EDC/NHS group is slightly higher than that of EDC/NHS-Heparin group. The crosslinking degree, stability against enzymes, stability in morphologically and biomechanical properties of EDC/NHS-Heparin group are higher than those of EDC/NHS group, whereas, the water-binding capacity in EDC/NHS-Heparin group is lower than that of EDC/NHS group. HUVECs in EDC/NHS-Heparin group scaffold proliferate fast, migrate well and distribute uniformly. One-step simultaneous method gains the better effects in above aspects, heparinized collagen matrices increase in angiogenic potential and suit for defect repairing and tissue engineering.
基金Supported by the Tianjin Clinical Key Discipline Project(No.TJLCZDXKQ013)the Research Project of Health Committee in Binhai District,Tianjin(No.2019BWKQ033)。
文摘AIM:To evaluate the effect of posterior sclera collagen cross-linking induced by riboflavin-ultraviolet A(UVA)on form-deprived myopia in guinea pigs.METHODES:Twenty-five pigmented guinea pigs of 3-week-old were randomly assigned into 4 groups that included normal control(NOR,n=7),form-deprived(FDM,n=7),normal with riboflavin-UVA cross-linking(NOR+CL,n=5)and form-deprived with cross-linking(FDM+CL,n=6).The NOR+CL group and the FDM+CL group received the riboflavin-UVA induced cross-linking at day 0.FDM was induced by monocularly deprived with facemask in the right eyes.The refraction,axial length and corneal curvature were measured by retinoscopy,A-scan and keratometer respectively in scheduled time points(day 0 and 1,2,3,4 wk after form-deprivation).At the end of 4 weeks’experiment,stress-strain tests of sclera were measured and morphological changes of sclera and retina were examined.RESULTS:After 4 wk,the interocular difference of refractive error were-0.11±0.67,-2.93±0.56,1.10±0.58,and-1.63±0.41 D in the NOR,FDM,NOR+CL,and FDM+CL groups respectively.Mixed-effect linear model revealed significant effect of FDM(P<0.01)and CL(P<0.001).Also,after 4 wk,the interocular difference of axial length were 0.01±0.04,0.29±0.07,-0.13±0.06,and 0.11±0.05 mm in the NOR,FDM,NOR+CL,and FDM+CL group.Mixedeffect linear model revealed significant effect of FDM(P<0.001)and CL(P<0.01).As for corneal curvature,significant interocular difference have not found between any of the two groups.At the end of this experiment,the ultimate stress and elastic modulus were found significantly increased in both CL groups.But no difference was found in the groups without cross-linked.There was no abnormality observed in the retina and RPE cells of the treated eyes.CONCLUSION:The posterior sclera collagen crosslinking induced by riboflavin-UVA can slow down the progress of myopia and increase the sclera biomechanical strength in the guinea pig model of form-deprived myopia.
文摘<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a spongy sheet composed of hyaluronic acid (HA) and collagen (Col). The spongy sheets were manufactured by freeze vacuum drying of HA and Col aqueous solution, followed by UV irradiation to introduce intermolecular crosslinks between Col molecules. These spongy sheets are referred to as Sponge-A (ratio of HA/Col = 5/1) and Sponge-B (ratio of HA/Col = 5/5). Both surfaces of Sponge-A and Sponge-B treated with UV irradiation for 15 minutes are referred to as Sponge-A-15 and Sponge-B-15, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of sponge-A-15 collected 1/2, 1, 3, 7 days after immersion in water was 63.5%, 62.1%, 56.6%, 54.4% of the original weight, respectively. The weight of Sponge-B-15 was 78.3%, 76.7%, 79.1%, 71.9% of the original weight, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water containing collagenase at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of Sponge-A-15 collected 6, 8, 10, 12 hours after immersion in water containing collagenase (0.0005</span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">w/v%) was 65.7%, 59.8%, 57.9%, 55.2% of the original weight, respectively. The weight of Sponge-B-15 was 63.5%, 52.1%, 42.0%, 43.2% of the original weight, respectively. This spongy sheet is considered to have the unique structure, where HA molecules are entrapped in an intermolecular cross-linked network structure of Col molecules. When immersed in water containing collagenase, the weight loss of spongy sheet is accelerated by easy extraction of HA molecules from the enzymatic degraded Col network structure. The performance of wound dressing and tissue anti-adhesive product is considered to depend on appropriate ratio of HA and Col, and also on appropriate rate of intermolecular crosslinks between Col molecules. These findings obtained in this study provide useful information for product development such as wound dressing and tissue anti-adhesive product.
基金the Research Centre,College of Applied Medical Sciences and the Deanship of Scientific Research at King Saud University for funding this research
文摘AIMTo present the results of same-day topography-guided photorefractive keratectomy (TG-PRK) and corneal collagen crosslinking (CXL) after previous intrastromal corneal ring segment (ISCR) implantation for keratoconus.
文摘Because of the excellent biocompatibility and its specific amino sequences,collagen is an ideal biomedical material for tissue engineering applications. But collagen is usually lack of mechanical strength to form a rigid 3-D matrix and lack of ability to resist collagenase. In order to be a tissue engineering scaffold,collagen must strengthen its structures by modifying with chemical crosslinkers. Chemical crosslinkers used for modifying collagen fibers include glutaraldehyde(GA),epoxy compounds(PC) and carbodiimides (EDC). The aim of this study is to choose the best chemical crosslinker from the three reagents. In terms of the resistance to collagenase degradation,chemical cross-linking with PC provided the best protection; in terms of the mechanical characterization,chemical cross-linking with GA provided the best;and in terms of the biocompatibility,chemical cross-linking with EDC provided the best.There is not a reagent which has all merits for collagen crosslinking,so we should select the crosslinking reagent as the demands of use ask.
基金the European Research Council[ERC Advanced Grant 3205983D-E]the Medical Research Council,Arthritis Research UK,Reumafonds and the UKRMP。
文摘Tissue engineering response may be tailored via controlled,sustained release of active agents from protein-loaded degradable microparticles incorporated directly within three-dimensional(3D)ice-templated collagen scaffolds.However,the effects of covalent crosslinking during scaffold preparation on the availability and release of protein from the incorporated microparticles have not been explored.Here,we load 3D ice-templated collagen scaffolds with controlled additions of poly-(DL-lactide-co-glycolide)microparticles.We probe the effects of subsequent N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride crosslinking on protein release,using microparticles with different internal protein distributions.Fluorescein isothiocyanate labelled bovine serum albumin is used as a model protein drug.The scaffolds display a homogeneous microparticle distribution,and a reduction in pore size and percolation diameter with increased microparticle addition,although these values did not fall below those reported as necessary for cell invasion.The protein distribution within the microparticles,near the surface or more deeply located within the microparticles,was important in determining the release profile and effect of crosslinking,as the surface was affected by the carbodiimide crosslinking reaction applied to the scaffold.Crosslinking of microparticles with a high proportion of protein at the surface caused both a reduction and delay in protein release.Protein located within the bulk of the microparticles,was protected from the crosslinking reaction and no delay in the overall release profile was seen.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)(grant number 31370952,31,470,914).
文摘Riboflavin/UV-mediated corneal collagen cross-linking can increase the mechanical strength of the cornea and prevent or delay corneal expansion and keratoconus progression.We performed quantitative analysis of protein iTRAQ in rabbit eye white matter after cross-linking to explore the changes of protein expression in cornea at different times after cross-linking and to understand the process of corneal stroma remodeling after cross-linking.The screening conditions are fold Change1.2 and P-value<0.05,we identified 713 and 38 differentially expressed proteins in cornea at 1 week and 1 month after cross-linking.There were 16 differentially expressed proteins at two time points after corneal cross-linking.By annotating the functions of these proteins,we identified some proteins that affect the mechanical properties of the cornea,and these proteins are involved in cell growth,oxidative stress response,and signal transduction in the cornea.It has a guiding role in studying the corneal stroma remodeling process after collagen crosslinking.