Guided by Lo.Yang's method, we concern the question that how algebroid func- tions are determined by their multiple values and deficient values and we prove an at most 3v-valued theorem for algebroid functions. The r...Guided by Lo.Yang's method, we concern the question that how algebroid func- tions are determined by their multiple values and deficient values and we prove an at most 3v-valued theorem for algebroid functions. The results are complemented by an example for completeness.展开更多
In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which includ...In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which include an at most 3v-valued theorem.These results extend the existing achievements of some scholars.展开更多
In this paper, we study the deficient relation of some transcendental entire functions. If f j(z)(j=1,2,...,p) be transcendental entire functions, and let a j(j=1,2,...,p) be nonzero finite complex numbers....In this paper, we study the deficient relation of some transcendental entire functions. If f j(z)(j=1,2,...,p) be transcendental entire functions, and let a j(j=1,2,...,p) be nonzero finite complex numbers. If ∑pj=1a jf j(z)≡1 , then ∑pj=1δ p-1 (0,f j)≤p-1, where δ p-1 (0,f j)=1- lim r→∞N p-1 (r,1/f j)T(r,f j) (j=1,2,...,p). The result improves a result of Niino and Ozawa. Meanwhile we give some applications of our result.展开更多
基金partially supported by Natural Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘Guided by Lo.Yang's method, we concern the question that how algebroid func- tions are determined by their multiple values and deficient values and we prove an at most 3v-valued theorem for algebroid functions. The results are complemented by an example for completeness.
基金supported by the Natural Science Foundation of China(11871108)Teacher Research Capacity Promotion Program of Beijing Normal University Zhuhai+2 种基金Guangdong Natural Science Foundation(2018A030313954)Guangdong Universities(Basic Research and Applied Research)Major Project(2017KZDXM038)Guangdong Provincical Anti-monopoly Law Enforcement and Big Data Analysis Research Center Project(2019D04)。
文摘In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which include an at most 3v-valued theorem.These results extend the existing achievements of some scholars.
文摘In this paper, we study the deficient relation of some transcendental entire functions. If f j(z)(j=1,2,...,p) be transcendental entire functions, and let a j(j=1,2,...,p) be nonzero finite complex numbers. If ∑pj=1a jf j(z)≡1 , then ∑pj=1δ p-1 (0,f j)≤p-1, where δ p-1 (0,f j)=1- lim r→∞N p-1 (r,1/f j)T(r,f j) (j=1,2,...,p). The result improves a result of Niino and Ozawa. Meanwhile we give some applications of our result.