In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order...In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.展开更多
There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,...There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,namely the basins of attraction of the method.The purpose of this study is to compare several iterative schemes for nonlinear equations.All the selected schemes are of the third-order of convergence and most of them have the same efficiency index.The comparison depends on the basins of attraction of the iterative techniques when applied on several polynomials of different degrees.As a comparison,we determine the CPU time(in seconds)needed by each scheme to obtain the basins of attraction,besides,we illustrate the area of convergence of these schemes by finding the number of convergent and divergent points in a selected range for all methods.Comparisons confirm the fact that basins of attraction differ for iterative methods of different orders,furthermore,they vary for iterative methods of the same order even if they have the same efficiency index.Consequently,this leads to the need for a new index that reflects the real efficiency of the iterative scheme instead of the commonly used efficiency index.展开更多
An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solutio...An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solution of a general tridiagonal system of equations with diagonal dominance. It is not only easy to implement, but also can directly carry out parallel computation. Convergence results are obtained by analysing the linear system. Numerical experiments show that the theory is accurate and the scheme is valid and reliable.展开更多
In this paper, we establish two new iterative methods of order four and five by using modified homotopy perturbation technique. We also present the convergence analysis of these iterative methods. To assess the validi...In this paper, we establish two new iterative methods of order four and five by using modified homotopy perturbation technique. We also present the convergence analysis of these iterative methods. To assess the validity and performance of these iterative methods, we have applied to solve some nonlinear problems.展开更多
In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods ...In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.展开更多
Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is ...Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.展开更多
In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactor...In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactory order of convergence rate was derived.展开更多
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init...This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.展开更多
In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity o...In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.展开更多
The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE)...The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.展开更多
In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574...In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.展开更多
In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic co...In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.展开更多
The convergence of interpolated-iterative method, which is applied to solve von Karman ’sequations of circular plates, has been strictly proved for unilateral arbitrary loads. On thebasis of programme of selecting in...The convergence of interpolated-iterative method, which is applied to solve von Karman ’sequations of circular plates, has been strictly proved for unilateral arbitrary loads. On thebasis of programme of selecting interpolated-iterative parameters, the strong nonlinearbending solutions of thin plates can be obtained exactly.展开更多
This paper presents a new family of twelfth-order methods for solving simple roots of nonlinear equations which greatly improves the order of convergence and the computational efficiency of the Newton’s method and so...This paper presents a new family of twelfth-order methods for solving simple roots of nonlinear equations which greatly improves the order of convergence and the computational efficiency of the Newton’s method and some other known methods.展开更多
In this paper we propose a kind of implicit iterative methods for solving ill-posed operator equations and discuss the properties of the methods in the case that the control parameter is fixed. The theoretical results...In this paper we propose a kind of implicit iterative methods for solving ill-posed operator equations and discuss the properties of the methods in the case that the control parameter is fixed. The theoretical results show that the new methods have certain important features and can overcome some disadvantages of Tikhonov-type regularization and explicit iterative methods. Numerical examples are also given in the paper, which coincide well with theoretical results.展开更多
This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which ...This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary展开更多
In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method...In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.展开更多
Convergence behaviors of solutions arising from certain system of third-order nonlinear differential equations are studied. Such convergence of solutions corresponding to extreme stability of solutions when relates a ...Convergence behaviors of solutions arising from certain system of third-order nonlinear differential equations are studied. Such convergence of solutions corresponding to extreme stability of solutions when relates a pair of solutions of the system considered. Using suitable Lyapunov functionals, we prove that the solutions of the nonlinear differential equation are convergent. Result obtained generalizes and improves some known results in the literature. Example is included to illustrate the result.展开更多
In this paper,we propose a fifth-order scheme for solving systems of nonlinear equations.The convergence analysis of the proposed technique is discussed.The proposed method is generalized and extended to be of any odd...In this paper,we propose a fifth-order scheme for solving systems of nonlinear equations.The convergence analysis of the proposed technique is discussed.The proposed method is generalized and extended to be of any odd order of the form 2n1.The scheme is composed of three steps,of which the first two steps are based on the two-step Homeier’s method with cubic convergence,and the last is a Newton step with an appropriate approximation for the derivative.Every iteration of the presented method requires the evaluation of two functions,two Fréchet derivatives,and three matrix inversions.A comparison between the efficiency index and the computational efficiency index of the presented scheme with existing methods is performed.The basins of attraction of the proposed scheme illustrated and compared to other schemes of the same order.Different test problems including large systems of equations are considered to compare the performance of the proposed method according to other methods of the same order.As an application,we apply the new scheme to some real-life problems,including the mixed Hammerstein integral equation and Burgers’equation.Comparisons and examples show that the presented method is efficient and comparable to the existing techniques of the same order.展开更多
文摘In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.
基金We are grateful for the financial support from UKM’s research Grant GUP-2019-033。
文摘There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,namely the basins of attraction of the method.The purpose of this study is to compare several iterative schemes for nonlinear equations.All the selected schemes are of the third-order of convergence and most of them have the same efficiency index.The comparison depends on the basins of attraction of the iterative techniques when applied on several polynomials of different degrees.As a comparison,we determine the CPU time(in seconds)needed by each scheme to obtain the basins of attraction,besides,we illustrate the area of convergence of these schemes by finding the number of convergent and divergent points in a selected range for all methods.Comparisons confirm the fact that basins of attraction differ for iterative methods of different orders,furthermore,they vary for iterative methods of the same order even if they have the same efficiency index.Consequently,this leads to the need for a new index that reflects the real efficiency of the iterative scheme instead of the commonly used efficiency index.
文摘An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solution of a general tridiagonal system of equations with diagonal dominance. It is not only easy to implement, but also can directly carry out parallel computation. Convergence results are obtained by analysing the linear system. Numerical experiments show that the theory is accurate and the scheme is valid and reliable.
文摘In this paper, we establish two new iterative methods of order four and five by using modified homotopy perturbation technique. We also present the convergence analysis of these iterative methods. To assess the validity and performance of these iterative methods, we have applied to solve some nonlinear problems.
文摘In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.
文摘Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.
文摘In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactory order of convergence rate was derived.
文摘This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.
基金supported by the National Natural Science Foundation of China (No.12271518)the Key Program of the National Natural Science Foundation of China (No.62333016)。
文摘In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results.
文摘The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.
文摘In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.
文摘In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.
基金Project supported by the National Natural Science Foundation of China.
文摘The convergence of interpolated-iterative method, which is applied to solve von Karman ’sequations of circular plates, has been strictly proved for unilateral arbitrary loads. On thebasis of programme of selecting interpolated-iterative parameters, the strong nonlinearbending solutions of thin plates can be obtained exactly.
文摘This paper presents a new family of twelfth-order methods for solving simple roots of nonlinear equations which greatly improves the order of convergence and the computational efficiency of the Newton’s method and some other known methods.
文摘In this paper we propose a kind of implicit iterative methods for solving ill-posed operator equations and discuss the properties of the methods in the case that the control parameter is fixed. The theoretical results show that the new methods have certain important features and can overcome some disadvantages of Tikhonov-type regularization and explicit iterative methods. Numerical examples are also given in the paper, which coincide well with theoretical results.
文摘This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary
文摘In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.
文摘Convergence behaviors of solutions arising from certain system of third-order nonlinear differential equations are studied. Such convergence of solutions corresponding to extreme stability of solutions when relates a pair of solutions of the system considered. Using suitable Lyapunov functionals, we prove that the solutions of the nonlinear differential equation are convergent. Result obtained generalizes and improves some known results in the literature. Example is included to illustrate the result.
基金We are grateful for the financial support from UKM’s research Grant GUP-2019-033.
文摘In this paper,we propose a fifth-order scheme for solving systems of nonlinear equations.The convergence analysis of the proposed technique is discussed.The proposed method is generalized and extended to be of any odd order of the form 2n1.The scheme is composed of three steps,of which the first two steps are based on the two-step Homeier’s method with cubic convergence,and the last is a Newton step with an appropriate approximation for the derivative.Every iteration of the presented method requires the evaluation of two functions,two Fréchet derivatives,and three matrix inversions.A comparison between the efficiency index and the computational efficiency index of the presented scheme with existing methods is performed.The basins of attraction of the proposed scheme illustrated and compared to other schemes of the same order.Different test problems including large systems of equations are considered to compare the performance of the proposed method according to other methods of the same order.As an application,we apply the new scheme to some real-life problems,including the mixed Hammerstein integral equation and Burgers’equation.Comparisons and examples show that the presented method is efficient and comparable to the existing techniques of the same order.