Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platformscontributing to redefine the boundaries of modern biological research. They are composed of a non-specificcleav...Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platformscontributing to redefine the boundaries of modern biological research. They are composed of a non-specificcleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications byinducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases havebeen employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively.This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies,biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbitsusing transcription activator-like effector nucleases, and a perspective of the field.展开更多
Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consist...Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consisting of tandem repeats that can be engineered to bind user-defined specific DNA sequences. We demonstrated that customized TALE-based nucleases (TALENs), constructed using a method called "unit assembly", specifically target the endogenous FRIGIDA gene in Brassica oleracea L. var. capitata L. The results indicate that the TALENs bound to the target site and cleaved double-strand DNA in vitro and in vivo, whereas the effector binding elements have a 23 bp spacer. The T7 endonuclease I assay and sequencing data show that TALENs made double-strand breaks, which were repaired by a non- homologous end-joining pathway within the target sequence. These data show the feasibility of applying customized TALENs to target and modify the genome with deletions in those organisms that are still in lacking gene target methods to provide germplasms in breeding improvement.展开更多
TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcrip- tional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by T...TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcrip- tional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant tran- scription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.展开更多
Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved...Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.展开更多
基金Work on this topic in the authors’laboratories is supported by grants from:the Strategic Priority Research Program of the Chinese Academy of Sciences(number XDA01020106)the Ministry of Science and Technology of China 973 program(2011CB965200)+2 种基金the National Natural Science Foundation of China(81261130317)to MAEthe Bureau of Science,Technology and Information of Guangzhou Municipality(2012 J5100040)to MAE and JFgrants 2010U1-E00811-5 and ZNGI-2011-010 from the Guangzhou Municipality and the Chinese Academy of Sciences,respectively,to LL.
文摘Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platformscontributing to redefine the boundaries of modern biological research. They are composed of a non-specificcleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications byinducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases havebeen employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively.This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies,biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbitsusing transcription activator-like effector nucleases, and a perspective of the field.
基金supported by grants from the National Basic Research Program of China (973 program, 2012CB113900)the National Natural Science Foundation of China (31071802)the Chongqing Natural Science Foundation (2011BA1002)
文摘Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consisting of tandem repeats that can be engineered to bind user-defined specific DNA sequences. We demonstrated that customized TALE-based nucleases (TALENs), constructed using a method called "unit assembly", specifically target the endogenous FRIGIDA gene in Brassica oleracea L. var. capitata L. The results indicate that the TALENs bound to the target site and cleaved double-strand DNA in vitro and in vivo, whereas the effector binding elements have a 23 bp spacer. The T7 endonuclease I assay and sequencing data show that TALENs made double-strand breaks, which were repaired by a non- homologous end-joining pathway within the target sequence. These data show the feasibility of applying customized TALENs to target and modify the genome with deletions in those organisms that are still in lacking gene target methods to provide germplasms in breeding improvement.
文摘TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcrip- tional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant tran- scription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.
文摘Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.