Glucose transporter(GLUT)-mediated transcytosis has been validated as an efficient method to cross the blood-brain barrier and enhance brain transport of nanomedicines.However,the transcytosis process remains elusive....Glucose transporter(GLUT)-mediated transcytosis has been validated as an efficient method to cross the blood-brain barrier and enhance brain transport of nanomedicines.However,the transcytosis process remains elusive.Glycopeptide-modified nanodisks(Gly-A7R-NDs),which demonstrated high capacity of brain targeting via GLUT-mediated transcytosis in our previous reports,were utilized to better understand the whole transcytosis process.Gly-A7R-NDs internalized brain capillary endothelial cells mainly via GLUT-mediated/clathrin dependent endocytosis and macropinocytosis.The intracellular Gly-A7R-NDs remained intact,and the main excretion route of Gly-A7R-NDs was lysosomal exocytosis.Glycosylation of nanomedicine was crucial in GLUT-mediated transcytosis,while morphology did not affect the efficiency.This study highlights the pivotal roles of lysosomal exocytosis in the process of GLUT-mediated transcytosis,providing a new impetus to development of brain targeting drug delivery by accelerating lysosomal exocytosis.展开更多
Overloading the intestine enterocytes with lipids induced alteration of the Golgi complex(GC;Sesorova et al.,2020)and could cause glycosylation errors.Here,using differentiated Caco-2 cells with the established 0[I]bl...Overloading the intestine enterocytes with lipids induced alteration of the Golgi complex(GC;Sesorova et al.,2020)and could cause glycosylation errors.Here,using differentiated Caco-2 cells with the established 0[I]blood group phenotype(no expression of the blood antigens A and B[AgA,AgB]under normal conditions)as a model of human enterocytes we examined whether the overloading of these cells with lipids could cause errors in the Golgi-dependent glycosylation.We demonstrated that under these conditions,there were alterations of the GC and the appearance of lipid droplets in the cytoplasm.Rare cells produced AgA and AgB.This suggested that after overloading of enterocytes with lipids,AgA were mistakenly synthesized in individual enterocytes by the Golgi glycosyltransferases.These mistakes could explain why in the absence of AgA and AgB antibodies against them exist in the blood.展开更多
Crohn’s disease(CD)is a chronic inflammatory bowel disease.Research has identified genetic predisposition and environmental factors as key elements in the development of the disease.However,the precise mechanism that...Crohn’s disease(CD)is a chronic inflammatory bowel disease.Research has identified genetic predisposition and environmental factors as key elements in the development of the disease.However,the precise mechanism that initiates immune activation remains undefined.One pathway for luminal antigenic molecules to enter the sterile lamina propria and activate an immune response is via transcytosis.Transcytosis,although tightly regulated by the cell,has the potential for transepithelial transport of bacteria and highly antigenic luminal molecules whose uncontrolled translocation into the lamina propria can be the source of immune activation.Viewed as a whole,the evidence suggests that unregulated intestinal epithelial transcytosis is involved in the inappropriate presentation of immunogenic luminal macromolecules to the intestinal lamina propria.Thus fulfilling the role of an early pre-morbid mechanism that can result in antigenic overload of the lamina propria and initiate an immune response culminating in chronic inflammation characteristic of this disease.It is the aim of this paper to present evidence implicating enterocyte transcytosis in the early etio-pathogenesis of CD.展开更多
It has been hypothesized that Rab3A, a small GTPase, may be closely involved in the process of dense core vesicle exocytosis in various cell types. This possibility was investigated by disrupting the expression levels...It has been hypothesized that Rab3A, a small GTPase, may be closely involved in the process of dense core vesicle exocytosis in various cell types. This possibility was investigated by disrupting the expression levels of Rab3A-mRNA using a small interfering RNA of the Rab3A GTPase (Rab3A-siRNA) and examining the effect of this on transcytosis of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). Rab3A-siRNA and WGA-HRP were injected into the right vagus nerves of adult rats which were killed 12, 24 or 48 hours later. In some animals, portions of the brain stem containing the nucleus of solitary tract (NST) were prepared for electron microscopy. In other animals, the nodose ganglion of the vagus nerve was used to determine the levels of expression of Rab3A-mRNA using RT-PCR techniques. It was found that the expression of Rab3A-mRNA was markedly depressed in animals at 12 h after the Rab3A-siRNA injection. In the NST, there was an accumulation of HRP-reaction product (RP), recognized as electron dense lysosomal-like structures, in both axons and terminals in the NST 12 h after injection. Some HRP-RP was found in membrane bound vesicles in close proximity to cell membranes and appeared to be in the process of transcytosis. This neuronal transcytosis of HRP-RP appeared to occur at random locations over the axodendritic membranes. These findings indicate that inhibiting the expression of Rab3A-mRNA using Rab3A-siRNA can modulate the level of transcytosis of proteins across neuronal membranes confirming the potentially important role of this GTPase in the process of transcytosis.展开更多
Extracellular vesicles(EVs)have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size,biocompatibility,and high stability.Herein,we demonstrate ora...Extracellular vesicles(EVs)have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size,biocompatibility,and high stability.Herein,we demonstrate orange-derived extracellular vesicles(OEV)nanodrugs(DN@OEV)by modifying cRGD-targeted doxorubicin(DOX)nanoparticles(DN)onto the surface of OEV,enabling significantly enhancing tumor accumulation and penetration,thereby efficiently inhibiting the growth of ovarian cancer.The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells,which presented the average above 10-fold transcytosis effect compared with individual DN.It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway,thereby inducing the enhanced transcytosis.In particular,the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process.Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of thedrugdelivery system.展开更多
As a standard cancer treatment method,radiotherapy(RT)has cured or alleviated over half cancer bearing patients worldwide more than 100 years.However,the therapeutic outcome is seriously hindered by the resistant tumo...As a standard cancer treatment method,radiotherapy(RT)has cured or alleviated over half cancer bearing patients worldwide more than 100 years.However,the therapeutic outcome is seriously hindered by the resistant tumor microenvironment(TME).Hypoxia is a critical factor of vicious TME that causes radiation resistance owing to the insufficiency of oxygen for DNA damage maintenance.Moreover,severe vascular dysfunction and pyknomorphic extracellular matrix(ECM)in deep tumor tissues substantially limit radiosensitizer penetration and oxygen diffusion from vessels into tightly packed tumor core.In this study,we develop a hybrid transcytosis nanopomegranate(HTP)with high transcytosis potential in response to TME condition.HTP is architected by self-assembly of small CuS and Au nanoparticles(NPs)at normal physiological condition.HTP can rapidly collapse to transcytosis NPs(CuS and Au NPs)in TME with cationized surface,which enables excellent transcytosis potential and effectively elevates the penetration of CuS and Au into deep tumor tissues.Following the second near-infrared(NIR(II))biowindow laser irradiation,CuS heats the tumor and enhances blood perfusion,eliciting tumor hypoxia alleviation and DNA damage aggravation.Moreover,Au NPs enriched in deep tumor tissues effectively sensitize radio-therapeutic response.Our study provides a new and potential nano-platform to ameliorate tumor hypoxia and sensitize deep tumor tissue radiotherapy.展开更多
Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is no...Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.展开更多
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo...The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.展开更多
The Junonia coenia densovirus rapidly traverses the gut epithelium of the host lepidopteran without replicating in the gut cells.The ability of this virus to transcytose across the gut epithelium is of interest for th...The Junonia coenia densovirus rapidly traverses the gut epithelium of the host lepidopteran without replicating in the gut cells.The ability of this virus to transcytose across the gut epithelium is of interest for the potential use of virus structural proteins as delivery vehicles for insecticidal peptides that act within the insect hemocoel,rather than in the gut.In this study,we used fall armyworm,Spodoptera frugiperda to examine the binding of the virus to brush border membrane vesicle proteins by two-dimensional ligand blot analysis.We also assessed the rate of flux of the primary viral structural protein,VP4 fused to eGFP with a proline-rich linker(VP4-P-eGFP)through the gut epithelium ex vivo in an Ussing chamber.The mechanisms involved with transcytosis of VP4-P-eGFP were assessed by use of inhibitors.Bovine serum albumin(BSA)and eGFP were used as positive and negative control proteins,respectively.In contrast to BSA,which binds to multiple proteins on the brush border membrane,VP4-P-eGFP binding was specific to a protein of high molecular mass.Protein flux was significantly higher for VP4-P-eGFP after 2 h than for albumin or eGFP,with rapid transcytosis of VP4-P-eGFP within the first 30 min.In contrast to BSA which transcytosed following clathrin-mediated endocytosis,the movement of VP4-P-eGFP was vesicle-mediated but clathrin-independent.The specificity of binding combined with the efficiency of transport across the gut epithelium suggest that VP4 will provide a useful carrier for insecticidal peptides active within the hemocoel of key lepidopteran pests including S.frugiperda.展开更多
Neurovascular dysfunction,as an integral part of Alzheimer's disease,may have an important influence on the onset and progression of chronic neurodegenerative processes.The bloodbrain barrier(BBB)pathway is one of...Neurovascular dysfunction,as an integral part of Alzheimer's disease,may have an important influence on the onset and progression of chronic neurodegenerative processes.The bloodbrain barrier(BBB)pathway is one of the main pathways that mediates the clearance of amyloidbeta(Aβ)in the brain parenchyma.A large number of studies have shown that receptors and ATPbinding cassette transporte rs expressed on endothelial cells play an important role in Aβtransport across the BBB,but the specific mechanism is not clear.In this review,we summarize the possible mechanisms of Aβproduction and clearance,and in particular the relationship between Aβand brain capillary endothelial cells.Aβis produced by abnormal cleavage of the amyloid precursor protein via amyloidogenic processing under pathological conditions.Dys regulation of Aβclearance is considered to be the main reason for the massive accumulation of Aβin the brain parenchyma.Several pathways mediating Aβclearance from the brain into the periphery have been identified,including the BBB pathway,the blood-cerebros pinal fluid barrier and arachnoid granule pathway,and the lymphoidrelated pathway.Brain ca pilla ry endothelial cells are the key components of Aβclearance mediated by BBB.Receptors(such as LRP1,RAGE,and FcRn)and ATP-binding cassette transporters(such as P-gp,ABCA1,and ABCC1)expressed on endothelial cells play a critical role in Aβtranscytosis across the BBB.The toxic effects of Aβcan induce dysregulation of receptor and transpo rter expression on endothelial cells.Excessive Aβexerts potent detrimental cerebrovascular effects by promoting oxidative stress,inducing chronic inflammation,and impairing endothelial structure and functions.All of these are main causes for the reduction in Aβclearance across the BBB and the accumulation of Aβin the brain parenchyma.Therefo re,studies on the intera ctions between Aβand brain capillary endothelial cells,including their receptors and transporters,studies on inhibition of the toxic effects of Aβon endothelial cells,and studies on promoting the ability of endothelial cells to mediate Aβclearance may provide new therapeutic strategies for Aβclearance in Alzheimer's disease.展开更多
Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies...Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies to confirm the specific endocytic pathways and discusses factors for pathway selection.In addition,some intriguing implication about nanomedicine design based on endocytosis will also be discussed at the end.This review may provide new thoughts for the design of novel multifunctional nanomedicines.展开更多
Poor permeation of drugs and“immune-cold”tumor microenvironment in solid tumors are the two major challenges which lead to the inefficient therapeutic efficacy for cancer treatment.Here,light-activated penetrable na...Poor permeation of drugs and“immune-cold”tumor microenvironment in solid tumors are the two major challenges which lead to the inefficient therapeutic efficacy for cancer treatment.Here,light-activated penetrable nanoparticles(PEGVAL&DOX&ICG@RNPs)for co-delivery of the chemotherapeutic drug doxorubicin(DOX),the photosensitizer agent indocyanine green(ICG),and the angiotensin II receptor blockers valsartan(VAL)were developed to achieve deep drug penetration and synergistic photo-chemo-immunotherapy of solid tumor.Studies showed that under the first-wave of laser irradiation,the polyethylene glycol(PEG)hydrophilic layer as an“inert”surface could detach from the nanoparticles,release VAL and expose the arginine-rich peptide modified-cores that can facilitate deep drug penetration via a transcytosis pathway.When exposed to the second-wave of laser irradiation,the synergistic chemo-photo-immunotherapy can be achieved.As expected,in 4T1 tumorbearing mice,PEG-VAL&DOX&ICG@RNPs treatment could effectively inhibit the growth of tumors,down-regulateα-smooth muscle actin expression level of cancer-associated fibroblasts cells in tumors,induce dendritic cells(DCs)maturation,and promote intratumoral infiltration of cytotoxic T lymphocytes.Moreover,combination therapy by PEG-VAL&DOX&ICG@RNPs and anti-PD-1 monoclonal antibody can elicit memory T cell response for preventing tumor recurrence and metastasis in vivo.This work provides a promising delivery strategy to overcome the current limitations of nanomedicine for achieving more effective therapeutic index of“immune-cold”solid tumor treatment.展开更多
Cancer nanomedicines require different,even opposite,properties to voyage the cascade drug delivery process involving a series of biological barriers.Currentlyapproved nanomedicines can only alleviate adverse effects ...Cancer nanomedicines require different,even opposite,properties to voyage the cascade drug delivery process involving a series of biological barriers.Currentlyapproved nanomedicines can only alleviate adverse effects but cannot improve patient survival because they fail to meet all the requirements.Therefore,nanocarriers with synchronized functions are highly requisite to capacitate efficient drug delivery and enhanced therapeutic efficacies.This perspective article summarizes recent advances in the two main strategies for nanomedicine design,the All-in-One approach(integration of all the functions in one system)and the One-for-All approach(one functional group with proper affinity enables all the functions),and presents our views on future nanomedicine development.展开更多
Tumor vasculature is characterized by aberrant structure and function,resulting in immune suppressive profiles of tumor microenvironment through limiting immune cell infiltration into tumors,endogenous immune surveill...Tumor vasculature is characterized by aberrant structure and function,resulting in immune suppressive profiles of tumor microenvironment through limiting immune cell infiltration into tumors,endogenous immune surveillance and immune cell function.Vascular normalization as a novel therapeutic strategy tends to prune some of the immature blood vessels and fortify the structure and function of the remaining vessels,thus improving immune stimulation and the efficacy of immunotherapy.Interestingly,the presence of"immune-vascular crosstalk"enables the formation of a positive feedback loop between vascular normalization and immune reprogramming,providing the possibility to develop new cancer therapeutic strategies.The applications of nanomedicine in vascular-targeting therapy in cancer have gained increasing attention due to its specific physical and chemical properties.Here,we reviewed the recent advances of effective routes,especially nanomedicine,for normalizing tumor vasculature.We also summarized the development of enhancing nanoparticle-based anticancer drug delivery via the employment of transcytosis and mimicking immune cell extravasation.This review explores the potential to optimize nanomedicine-based therapeutic strategies as an alternative option for cancer treatment.展开更多
Insurmountable blood-brain barrier(BBB) and complex pathological features are the key factors affecting the treatment of Alzheimer's disease(AD).Poor accumulation of drugs in lesion sites and undesired effectivene...Insurmountable blood-brain barrier(BBB) and complex pathological features are the key factors affecting the treatment of Alzheimer's disease(AD).Poor accumulation of drugs in lesion sites and undesired effectiveness of simply reducing Aβ deposition or TAU protein need to be resolved urgently.Herein,a nanocleaner is designed with a rapamycin-loaded ROS-responsive PLGA core and surface modification with KLVFF peptide and acid-cleavable DAG peptide [R@(ox-PLGA)-KcD].DAG can enhance the targeting and internalization effect of nanocleaner towards neurovascular unit endothelial cells in AD lesions,and subsequently detach from nanocleaner in response to acidic microenvironment of endosomes to promote the transcytosis of nanocleaner from endothelial cells into brain parenchyma.Then exposed KLVFF can capture and carry Aβ to microglia,attenuating Aβ-induced neurotoxicity.Strikingly,rapamycin,an autophagy promoter,is rapidly liberated from nanocleaner in the high ROS level of lesions to improve Aβ degradation and normalize inflammatory condition.This design altogether accelerates Aβ degradation and alleviates oxidative stress and excessive inflammatory response.Collectively,our finding offers a strategy to target the AD lesions precisely and multi-pronged therapies for clearing the toxic proteins and modulating lesion microenvironment,to achieve efficient AD therapy.展开更多
As one of the most important components of caveolae,caveolin-1 is involved in caveolaemediated endocytosis and transcytosis pathways,and also plays a role in regulating the cell membrane cholesterol homeostasis and me...As one of the most important components of caveolae,caveolin-1 is involved in caveolaemediated endocytosis and transcytosis pathways,and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction.In recent years,the relationship between the expression level of caveolin-1 in the tumor microenvironment and the prognostic effect of tumor treatment and drug treatment resistance has also been widely explored.In addition,the interplay between caveolin-1 and nano-drugs is bidirectional.Caveolin-1 could determine the intracellular biofate of specifc nano-drugs,preventing from lysosomal degradation,and facilitate them penetrate into deeper site of tumors by transcytosis;while some nanocarriers could also affect caveolin-1 levels in tumor cells,thereby changing certain biophysical function of cells.This article reviews the role of caveolin-1 in tumor prognosis,chemotherapeutic drug resistance,antibody drug sensitivity,and nano-drug delivery,providing a reference for the further application of caveolin-1 in nano-drug delivery systems.展开更多
The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distributio...The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distribution of drugs.Therefore,we established an ibuprofen and FK506 encapsulated drug co-delivery system(Ibu&FK@RNPs),which can target the receptor of advanced glycation endproducts(RAGE)and response to the high level of reactive oxygen species(ROS)in AD.RAGE is highly and specifically expressed on the lesion neurovascular unit of AD,this property helps to improve targeting specificity of the system and reduce unselective distribution in normal brain.Meanwhile,these two drugs can be specifically released in astrocytes of AD lesion in response to high levels of ROS.As a result,the cognition of AD mice was significantly improved and the quantity of Aβplaques was decreased.Neurotoxicity was also alleviated with structural regeneration and functional recovery of neurons.Besides,the neuroinflammation dominated by NF-κB pathway was significantly inhibited with decreased NF-κB and IL-1βin the brain.Overall,Ibu&FK@RNPs can efficiently and successively target diseased BBB and astrocytes in AD lesion.Thus it significantly enhances intracephalic accumulation of drugs and efficiently treats AD by anti-neuroinflammation and neuroprotection.展开更多
As endogenous courier vesicles,exosomes play crucial roles in macromolecule transmission and intercellular communication.Therefore,exosomes have drawn increasing attention as biomimetic drug-delivery vehicles over the...As endogenous courier vesicles,exosomes play crucial roles in macromolecule transmission and intercellular communication.Therefore,exosomes have drawn increasing attention as biomimetic drug-delivery vehicles over the past few years.However,few studies have investigated the encapsulation of peptide/protein drugs into exosomes for oral administration.Additionally,the mechanisms underlying their biomimetic properties as oral delivery vehicles remain unknown.Herein,insulin-loaded milk-derived exosomes(EXO@INS)were fabricated and the in vivo hypoglycemic effect was investigated on type I diabetic rats.Surprisingly,EXO@INS(50 and 30 IU/kg)elicited a more superior and more sustained hypoglycemic effect compared with that obtained with subcutaneously injected insulin.Further mechanism studies indicated that the origin of excellent oral-performance of milk-derived exosomes combined active multi-targeting uptake,pH adaptation during gastrointestinal transit,nutrient assimilation related ERK1/2 and p38 MAPK signal pathway activation and intestinal mucus penetration.This study provides the first demonstration that multifunctional milk-derived exosomes offer solutions to many of the challenges arising from oral drug delivery and thus provide new insights into developing naturally-equipped nanovehicles for oral drug administration.展开更多
Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the...Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands ofPentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.展开更多
Tumor vasculature constitutes a formidable hurdle for the efficient delivery of cancer nanomedicine into tumors.The leverage of passive pathway through inter-endothelial gaps in tumor blood vessels might account for l...Tumor vasculature constitutes a formidable hurdle for the efficient delivery of cancer nanomedicine into tumors.The leverage of passive pathway through inter-endothelial gaps in tumor blood vessels might account for limited extravasation of nanomedicine into tumor microenvironment(TME).Herein,Annexin A1 antibody-installed mesoporous organosilica nanoplatforms carrying immunotherapeutics of anti-PD-L1 antibody(aPD-L1)and Indoximod are developed to target at caveolar Annexin-A1 protein of luminal endothelial cells and to trigger the active trans-endothelial transcytosis of nanomedicine mediated by caveolae.Such strategy enables rapid nanomedicine extravasation across tumor endothelium and relatively extensive accumulation in tumor interstitium.aPD-L1 and Indoximod release from aPD/IND@MON-aANN in a reduction-responsive manner and synergistically facilitate the intratumoral infiltration of cytotoxic T lymphocytes and reverse the immunosuppressive TME,thus demonstrating substantial anti-tumor efficacy in subcutaneous 4T1 breast tumors and remarkable anti-metastatic capacity to extend the survival of 4T1 tumor metastasis model.Moreover,aPD/IND@MON-aANN nanomedicine also exhibits distinct superiority over the combination therapy of free drugs to potently attenuate the progression of urethane-induced orthotopic lung cancers.Collectively,aPD/IND@MON-aANN nanoplatforms with boosted delivery efficiency via antibody-activated trans-endothelial pathway and enhanced immunotherapeutic efficacy provides perspectives for the development of cancer nanomedicines.展开更多
基金financially supported by the National Natural Science Foundation of China(81973245,81773657,81673361,81690263 and 81673370)China Postdoctoral Science Foundation(2019M651385)+3 种基金National Postdoctoral Program for Innovative Talent(BX20190086)Shanghai Municipal Commission of Health and Family Planning(2018BR04)Shanghai Natural Science Foundation(19431900300 and18ZR1404800)Pudong New Area Commission of Science&Technology(PKJ2016-Y46).
文摘Glucose transporter(GLUT)-mediated transcytosis has been validated as an efficient method to cross the blood-brain barrier and enhance brain transport of nanomedicines.However,the transcytosis process remains elusive.Glycopeptide-modified nanodisks(Gly-A7R-NDs),which demonstrated high capacity of brain targeting via GLUT-mediated transcytosis in our previous reports,were utilized to better understand the whole transcytosis process.Gly-A7R-NDs internalized brain capillary endothelial cells mainly via GLUT-mediated/clathrin dependent endocytosis and macropinocytosis.The intracellular Gly-A7R-NDs remained intact,and the main excretion route of Gly-A7R-NDs was lysosomal exocytosis.Glycosylation of nanomedicine was crucial in GLUT-mediated transcytosis,while morphology did not affect the efficiency.This study highlights the pivotal roles of lysosomal exocytosis in the process of GLUT-mediated transcytosis,providing a new impetus to development of brain targeting drug delivery by accelerating lysosomal exocytosis.
文摘Overloading the intestine enterocytes with lipids induced alteration of the Golgi complex(GC;Sesorova et al.,2020)and could cause glycosylation errors.Here,using differentiated Caco-2 cells with the established 0[I]blood group phenotype(no expression of the blood antigens A and B[AgA,AgB]under normal conditions)as a model of human enterocytes we examined whether the overloading of these cells with lipids could cause errors in the Golgi-dependent glycosylation.We demonstrated that under these conditions,there were alterations of the GC and the appearance of lipid droplets in the cytoplasm.Rare cells produced AgA and AgB.This suggested that after overloading of enterocytes with lipids,AgA were mistakenly synthesized in individual enterocytes by the Golgi glycosyltransferases.These mistakes could explain why in the absence of AgA and AgB antibodies against them exist in the blood.
文摘Crohn’s disease(CD)is a chronic inflammatory bowel disease.Research has identified genetic predisposition and environmental factors as key elements in the development of the disease.However,the precise mechanism that initiates immune activation remains undefined.One pathway for luminal antigenic molecules to enter the sterile lamina propria and activate an immune response is via transcytosis.Transcytosis,although tightly regulated by the cell,has the potential for transepithelial transport of bacteria and highly antigenic luminal molecules whose uncontrolled translocation into the lamina propria can be the source of immune activation.Viewed as a whole,the evidence suggests that unregulated intestinal epithelial transcytosis is involved in the inappropriate presentation of immunogenic luminal macromolecules to the intestinal lamina propria.Thus fulfilling the role of an early pre-morbid mechanism that can result in antigenic overload of the lamina propria and initiate an immune response culminating in chronic inflammation characteristic of this disease.It is the aim of this paper to present evidence implicating enterocyte transcytosis in the early etio-pathogenesis of CD.
文摘It has been hypothesized that Rab3A, a small GTPase, may be closely involved in the process of dense core vesicle exocytosis in various cell types. This possibility was investigated by disrupting the expression levels of Rab3A-mRNA using a small interfering RNA of the Rab3A GTPase (Rab3A-siRNA) and examining the effect of this on transcytosis of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). Rab3A-siRNA and WGA-HRP were injected into the right vagus nerves of adult rats which were killed 12, 24 or 48 hours later. In some animals, portions of the brain stem containing the nucleus of solitary tract (NST) were prepared for electron microscopy. In other animals, the nodose ganglion of the vagus nerve was used to determine the levels of expression of Rab3A-mRNA using RT-PCR techniques. It was found that the expression of Rab3A-mRNA was markedly depressed in animals at 12 h after the Rab3A-siRNA injection. In the NST, there was an accumulation of HRP-reaction product (RP), recognized as electron dense lysosomal-like structures, in both axons and terminals in the NST 12 h after injection. Some HRP-RP was found in membrane bound vesicles in close proximity to cell membranes and appeared to be in the process of transcytosis. This neuronal transcytosis of HRP-RP appeared to occur at random locations over the axodendritic membranes. These findings indicate that inhibiting the expression of Rab3A-mRNA using Rab3A-siRNA can modulate the level of transcytosis of proteins across neuronal membranes confirming the potentially important role of this GTPase in the process of transcytosis.
基金supported by the National Natural Science Foundation of China(22275080,22075127,and 82073340)the Natural Science Foundation of Guangdong Province(2022A 1515012044,China).
文摘Extracellular vesicles(EVs)have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size,biocompatibility,and high stability.Herein,we demonstrate orange-derived extracellular vesicles(OEV)nanodrugs(DN@OEV)by modifying cRGD-targeted doxorubicin(DOX)nanoparticles(DN)onto the surface of OEV,enabling significantly enhancing tumor accumulation and penetration,thereby efficiently inhibiting the growth of ovarian cancer.The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells,which presented the average above 10-fold transcytosis effect compared with individual DN.It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway,thereby inducing the enhanced transcytosis.In particular,the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process.Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of thedrugdelivery system.
基金the National Natural Science Foundation of China(Nos.32101139 and 81901888)the Fundamental Research Fund for the Central Universities(No.WK9100000006)+3 种基金the China Postdoctoral Science Foundation(No.2020M683160)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515220028)the Natural Science Foundation of Anhui Province of China(No.1908085MH247)the University of Science and Technology of China Animal Care and Use Committee(No.USTCACUC1801062).
文摘As a standard cancer treatment method,radiotherapy(RT)has cured or alleviated over half cancer bearing patients worldwide more than 100 years.However,the therapeutic outcome is seriously hindered by the resistant tumor microenvironment(TME).Hypoxia is a critical factor of vicious TME that causes radiation resistance owing to the insufficiency of oxygen for DNA damage maintenance.Moreover,severe vascular dysfunction and pyknomorphic extracellular matrix(ECM)in deep tumor tissues substantially limit radiosensitizer penetration and oxygen diffusion from vessels into tightly packed tumor core.In this study,we develop a hybrid transcytosis nanopomegranate(HTP)with high transcytosis potential in response to TME condition.HTP is architected by self-assembly of small CuS and Au nanoparticles(NPs)at normal physiological condition.HTP can rapidly collapse to transcytosis NPs(CuS and Au NPs)in TME with cationized surface,which enables excellent transcytosis potential and effectively elevates the penetration of CuS and Au into deep tumor tissues.Following the second near-infrared(NIR(II))biowindow laser irradiation,CuS heats the tumor and enhances blood perfusion,eliciting tumor hypoxia alleviation and DNA damage aggravation.Moreover,Au NPs enriched in deep tumor tissues effectively sensitize radio-therapeutic response.Our study provides a new and potential nano-platform to ameliorate tumor hypoxia and sensitize deep tumor tissue radiotherapy.
基金supported by China Scholarship Council(202208210093,to RJ)。
文摘Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
基金supported by the National Natural Science Foundation of China,No.82104412(to TD)Shaanxi Provincial Key R&D Program,No.2023-YBSF-165(to TD)+1 种基金the Natural Science Foundation of Shaanxi Department of Science and Technology,No.2018JM7022(to FM)Shaanxi Provincial Key Industry Chain Project,No.2021ZDLSF04-11(to PW)。
文摘The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.
基金supported by the National Science Foundation Industry/University Cooperative Research Center,the Center for Arthropod Management Technologies under Grant No.IIP-1338775,and by industry partners.
文摘The Junonia coenia densovirus rapidly traverses the gut epithelium of the host lepidopteran without replicating in the gut cells.The ability of this virus to transcytose across the gut epithelium is of interest for the potential use of virus structural proteins as delivery vehicles for insecticidal peptides that act within the insect hemocoel,rather than in the gut.In this study,we used fall armyworm,Spodoptera frugiperda to examine the binding of the virus to brush border membrane vesicle proteins by two-dimensional ligand blot analysis.We also assessed the rate of flux of the primary viral structural protein,VP4 fused to eGFP with a proline-rich linker(VP4-P-eGFP)through the gut epithelium ex vivo in an Ussing chamber.The mechanisms involved with transcytosis of VP4-P-eGFP were assessed by use of inhibitors.Bovine serum albumin(BSA)and eGFP were used as positive and negative control proteins,respectively.In contrast to BSA,which binds to multiple proteins on the brush border membrane,VP4-P-eGFP binding was specific to a protein of high molecular mass.Protein flux was significantly higher for VP4-P-eGFP after 2 h than for albumin or eGFP,with rapid transcytosis of VP4-P-eGFP within the first 30 min.In contrast to BSA which transcytosed following clathrin-mediated endocytosis,the movement of VP4-P-eGFP was vesicle-mediated but clathrin-independent.The specificity of binding combined with the efficiency of transport across the gut epithelium suggest that VP4 will provide a useful carrier for insecticidal peptides active within the hemocoel of key lepidopteran pests including S.frugiperda.
基金Shanxi Provincial Special Fund for the Transformation of Scientific and Technological Achievements,No.201704D13111584(to JHG)。
文摘Neurovascular dysfunction,as an integral part of Alzheimer's disease,may have an important influence on the onset and progression of chronic neurodegenerative processes.The bloodbrain barrier(BBB)pathway is one of the main pathways that mediates the clearance of amyloidbeta(Aβ)in the brain parenchyma.A large number of studies have shown that receptors and ATPbinding cassette transporte rs expressed on endothelial cells play an important role in Aβtransport across the BBB,but the specific mechanism is not clear.In this review,we summarize the possible mechanisms of Aβproduction and clearance,and in particular the relationship between Aβand brain capillary endothelial cells.Aβis produced by abnormal cleavage of the amyloid precursor protein via amyloidogenic processing under pathological conditions.Dys regulation of Aβclearance is considered to be the main reason for the massive accumulation of Aβin the brain parenchyma.Several pathways mediating Aβclearance from the brain into the periphery have been identified,including the BBB pathway,the blood-cerebros pinal fluid barrier and arachnoid granule pathway,and the lymphoidrelated pathway.Brain ca pilla ry endothelial cells are the key components of Aβclearance mediated by BBB.Receptors(such as LRP1,RAGE,and FcRn)and ATP-binding cassette transporters(such as P-gp,ABCA1,and ABCC1)expressed on endothelial cells play a critical role in Aβtranscytosis across the BBB.The toxic effects of Aβcan induce dysregulation of receptor and transpo rter expression on endothelial cells.Excessive Aβexerts potent detrimental cerebrovascular effects by promoting oxidative stress,inducing chronic inflammation,and impairing endothelial structure and functions.All of these are main causes for the reduction in Aβclearance across the BBB and the accumulation of Aβin the brain parenchyma.Therefo re,studies on the intera ctions between Aβand brain capillary endothelial cells,including their receptors and transporters,studies on inhibition of the toxic effects of Aβon endothelial cells,and studies on promoting the ability of endothelial cells to mediate Aβclearance may provide new therapeutic strategies for Aβclearance in Alzheimer's disease.
文摘Nanomedicines employ multiple endocytic pathways to enter cells.Their following fate is interesting,but it is not sufficient understood currently.This review introduces the endocytic pathways,presents new technologies to confirm the specific endocytic pathways and discusses factors for pathway selection.In addition,some intriguing implication about nanomedicine design based on endocytosis will also be discussed at the end.This review may provide new thoughts for the design of novel multifunctional nanomedicines.
基金We acknowledge financial support from National Natural Science Foundation of China(Nos.82172089,22178270 and 22078246)the Fundamental Research Funds for the Central Universities(No.2019PT320028)CAMS Innovation Fund for Medical Sciences(No.2021-I2M-1-058).
文摘Poor permeation of drugs and“immune-cold”tumor microenvironment in solid tumors are the two major challenges which lead to the inefficient therapeutic efficacy for cancer treatment.Here,light-activated penetrable nanoparticles(PEGVAL&DOX&ICG@RNPs)for co-delivery of the chemotherapeutic drug doxorubicin(DOX),the photosensitizer agent indocyanine green(ICG),and the angiotensin II receptor blockers valsartan(VAL)were developed to achieve deep drug penetration and synergistic photo-chemo-immunotherapy of solid tumor.Studies showed that under the first-wave of laser irradiation,the polyethylene glycol(PEG)hydrophilic layer as an“inert”surface could detach from the nanoparticles,release VAL and expose the arginine-rich peptide modified-cores that can facilitate deep drug penetration via a transcytosis pathway.When exposed to the second-wave of laser irradiation,the synergistic chemo-photo-immunotherapy can be achieved.As expected,in 4T1 tumorbearing mice,PEG-VAL&DOX&ICG@RNPs treatment could effectively inhibit the growth of tumors,down-regulateα-smooth muscle actin expression level of cancer-associated fibroblasts cells in tumors,induce dendritic cells(DCs)maturation,and promote intratumoral infiltration of cytotoxic T lymphocytes.Moreover,combination therapy by PEG-VAL&DOX&ICG@RNPs and anti-PD-1 monoclonal antibody can elicit memory T cell response for preventing tumor recurrence and metastasis in vivo.This work provides a promising delivery strategy to overcome the current limitations of nanomedicine for achieving more effective therapeutic index of“immune-cold”solid tumor treatment.
基金supported by the National Key Research and Development Program(2021YFA1201200)the National Natural Science Foundation of China(51833008 and 52203193)the Zhejiang Provincial Key Research and Development Program(2020C01123).
文摘Cancer nanomedicines require different,even opposite,properties to voyage the cascade drug delivery process involving a series of biological barriers.Currentlyapproved nanomedicines can only alleviate adverse effects but cannot improve patient survival because they fail to meet all the requirements.Therefore,nanocarriers with synchronized functions are highly requisite to capacitate efficient drug delivery and enhanced therapeutic efficacies.This perspective article summarizes recent advances in the two main strategies for nanomedicine design,the All-in-One approach(integration of all the functions in one system)and the One-for-All approach(one functional group with proper affinity enables all the functions),and presents our views on future nanomedicine development.
文摘Tumor vasculature is characterized by aberrant structure and function,resulting in immune suppressive profiles of tumor microenvironment through limiting immune cell infiltration into tumors,endogenous immune surveillance and immune cell function.Vascular normalization as a novel therapeutic strategy tends to prune some of the immature blood vessels and fortify the structure and function of the remaining vessels,thus improving immune stimulation and the efficacy of immunotherapy.Interestingly,the presence of"immune-vascular crosstalk"enables the formation of a positive feedback loop between vascular normalization and immune reprogramming,providing the possibility to develop new cancer therapeutic strategies.The applications of nanomedicine in vascular-targeting therapy in cancer have gained increasing attention due to its specific physical and chemical properties.Here,we reviewed the recent advances of effective routes,especially nanomedicine,for normalizing tumor vasculature.We also summarized the development of enhancing nanoparticle-based anticancer drug delivery via the employment of transcytosis and mimicking immune cell extravasation.This review explores the potential to optimize nanomedicine-based therapeutic strategies as an alternative option for cancer treatment.
基金supported by National Natural Science Foundation of China (No. 81872806)111 Project (No. B18035, China)the Fundamental of Research Funds for the Central University (China)。
文摘Insurmountable blood-brain barrier(BBB) and complex pathological features are the key factors affecting the treatment of Alzheimer's disease(AD).Poor accumulation of drugs in lesion sites and undesired effectiveness of simply reducing Aβ deposition or TAU protein need to be resolved urgently.Herein,a nanocleaner is designed with a rapamycin-loaded ROS-responsive PLGA core and surface modification with KLVFF peptide and acid-cleavable DAG peptide [R@(ox-PLGA)-KcD].DAG can enhance the targeting and internalization effect of nanocleaner towards neurovascular unit endothelial cells in AD lesions,and subsequently detach from nanocleaner in response to acidic microenvironment of endosomes to promote the transcytosis of nanocleaner from endothelial cells into brain parenchyma.Then exposed KLVFF can capture and carry Aβ to microglia,attenuating Aβ-induced neurotoxicity.Strikingly,rapamycin,an autophagy promoter,is rapidly liberated from nanocleaner in the high ROS level of lesions to improve Aβ degradation and normalize inflammatory condition.This design altogether accelerates Aβ degradation and alleviates oxidative stress and excessive inflammatory response.Collectively,our finding offers a strategy to target the AD lesions precisely and multi-pronged therapies for clearing the toxic proteins and modulating lesion microenvironment,to achieve efficient AD therapy.
文摘As one of the most important components of caveolae,caveolin-1 is involved in caveolaemediated endocytosis and transcytosis pathways,and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction.In recent years,the relationship between the expression level of caveolin-1 in the tumor microenvironment and the prognostic effect of tumor treatment and drug treatment resistance has also been widely explored.In addition,the interplay between caveolin-1 and nano-drugs is bidirectional.Caveolin-1 could determine the intracellular biofate of specifc nano-drugs,preventing from lysosomal degradation,and facilitate them penetrate into deeper site of tumors by transcytosis;while some nanocarriers could also affect caveolin-1 levels in tumor cells,thereby changing certain biophysical function of cells.This article reviews the role of caveolin-1 in tumor prognosis,chemotherapeutic drug resistance,antibody drug sensitivity,and nano-drug delivery,providing a reference for the further application of caveolin-1 in nano-drug delivery systems.
基金supported by National Natural Science Foundation of China (81872806, 81961138009)111 Project (B18035, China)+2 种基金the Fundamental of Research Funds for the Central Universities (China)the Open Research Fund of Chengdu University of Traditional Chinese Medicinethe Open Research Fund of Chengdu University of Traditional Chinese Medicine State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China
文摘The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distribution of drugs.Therefore,we established an ibuprofen and FK506 encapsulated drug co-delivery system(Ibu&FK@RNPs),which can target the receptor of advanced glycation endproducts(RAGE)and response to the high level of reactive oxygen species(ROS)in AD.RAGE is highly and specifically expressed on the lesion neurovascular unit of AD,this property helps to improve targeting specificity of the system and reduce unselective distribution in normal brain.Meanwhile,these two drugs can be specifically released in astrocytes of AD lesion in response to high levels of ROS.As a result,the cognition of AD mice was significantly improved and the quantity of Aβplaques was decreased.Neurotoxicity was also alleviated with structural regeneration and functional recovery of neurons.Besides,the neuroinflammation dominated by NF-κB pathway was significantly inhibited with decreased NF-κB and IL-1βin the brain.Overall,Ibu&FK@RNPs can efficiently and successively target diseased BBB and astrocytes in AD lesion.Thus it significantly enhances intracephalic accumulation of drugs and efficiently treats AD by anti-neuroinflammation and neuroprotection.
基金We gratefully acknowledge financial support from the National Science Foundation for Distinguished Young Scholars(81625023,China)the National Natural Science Foundation of China(81872818)the Major Research Plan of National Natural Science Foundation of China(81690261).
文摘As endogenous courier vesicles,exosomes play crucial roles in macromolecule transmission and intercellular communication.Therefore,exosomes have drawn increasing attention as biomimetic drug-delivery vehicles over the past few years.However,few studies have investigated the encapsulation of peptide/protein drugs into exosomes for oral administration.Additionally,the mechanisms underlying their biomimetic properties as oral delivery vehicles remain unknown.Herein,insulin-loaded milk-derived exosomes(EXO@INS)were fabricated and the in vivo hypoglycemic effect was investigated on type I diabetic rats.Surprisingly,EXO@INS(50 and 30 IU/kg)elicited a more superior and more sustained hypoglycemic effect compared with that obtained with subcutaneously injected insulin.Further mechanism studies indicated that the origin of excellent oral-performance of milk-derived exosomes combined active multi-targeting uptake,pH adaptation during gastrointestinal transit,nutrient assimilation related ERK1/2 and p38 MAPK signal pathway activation and intestinal mucus penetration.This study provides the first demonstration that multifunctional milk-derived exosomes offer solutions to many of the challenges arising from oral drug delivery and thus provide new insights into developing naturally-equipped nanovehicles for oral drug administration.
文摘Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands ofPentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC 81472727,NSFC 81773259 and NSFC 91029718)Science and Technology Commission of Shanghai Municipality(15JC1403100)National laboratory of Oncogene and Cancer-related Genes foundation(90-15-05).
文摘Tumor vasculature constitutes a formidable hurdle for the efficient delivery of cancer nanomedicine into tumors.The leverage of passive pathway through inter-endothelial gaps in tumor blood vessels might account for limited extravasation of nanomedicine into tumor microenvironment(TME).Herein,Annexin A1 antibody-installed mesoporous organosilica nanoplatforms carrying immunotherapeutics of anti-PD-L1 antibody(aPD-L1)and Indoximod are developed to target at caveolar Annexin-A1 protein of luminal endothelial cells and to trigger the active trans-endothelial transcytosis of nanomedicine mediated by caveolae.Such strategy enables rapid nanomedicine extravasation across tumor endothelium and relatively extensive accumulation in tumor interstitium.aPD-L1 and Indoximod release from aPD/IND@MON-aANN in a reduction-responsive manner and synergistically facilitate the intratumoral infiltration of cytotoxic T lymphocytes and reverse the immunosuppressive TME,thus demonstrating substantial anti-tumor efficacy in subcutaneous 4T1 breast tumors and remarkable anti-metastatic capacity to extend the survival of 4T1 tumor metastasis model.Moreover,aPD/IND@MON-aANN nanomedicine also exhibits distinct superiority over the combination therapy of free drugs to potently attenuate the progression of urethane-induced orthotopic lung cancers.Collectively,aPD/IND@MON-aANN nanoplatforms with boosted delivery efficiency via antibody-activated trans-endothelial pathway and enhanced immunotherapeutic efficacy provides perspectives for the development of cancer nanomedicines.