The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while fo...The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.展开更多
We investigate the teleportation of an entangled state via a couple of quantum channels, which are composed of a spin-1/2 Heisenberg dimer in two infinite Ising–Heisenberg chains. The heterotrimetallic coordination p...We investigate the teleportation of an entangled state via a couple of quantum channels, which are composed of a spin-1/2 Heisenberg dimer in two infinite Ising–Heisenberg chains. The heterotrimetallic coordination polymer CuⅡMnⅡ(L1)][FeⅢ(bpb)(CN)2]·ClO4·H2O(abbreviated as Fe–Mn–Cu) can be regarded as an actual material for this chain.We apply the transfer-matrix approach to obtain the density operator for the Heisenberg dimer and use the standard teleportation protocol to derive the analytical expression of the density matrix of the output state and the average fidelity of the entanglement teleportation. We study the effects of the temperature T, anisotropy coupling parameter △, Heisenberg coupling parameter J2 and external magnetic field h on the quantum channels. The results show that anisotropy coupling? and Heisenberg coupling J2 can favor the generation of the output concurrence and expand the scope of the successful average fidelity.展开更多
We investigate the thermal entanglement of the spin-1 Ising-Heisenberg diamond chain, which can be regarded as a theoretical model for the homometallic molecular ferrimagnet [Ni_3(C_4H_2O_4)_2-(μ_3-OH)_2(H_2O)_...We investigate the thermal entanglement of the spin-1 Ising-Heisenberg diamond chain, which can be regarded as a theoretical model for the homometallic molecular ferrimagnet [Ni_3(C_4H_2O_4)_2-(μ_3-OH)_2(H_2O)_4]n ·(2H_2O)n. Two cases,i.e., the isotropic Heisenberg(Ising-XXX) coupling model and anisotropic Heisenberg(Ising-XXZ) coupling model, are discussed respectively. The negativity is chosen as the measurement of the thermal entanglement. By means of the transfermatrix approach, we focus on the effects of biquadratic interaction parameters on the negativity of the infinite spin-1 Ising-Heisenberg diamond chain. In the Ising-XXX coupling model, it is shown that for the case with ferromagnetic coupling the thermal entanglement can be induced by the biquadratic interaction, but the external magnetic field will suppress the occurrence of the entanglement induced by the biquadratic interaction. In the Ising-XXZ coupling model,for the case with antiferromagnetic coupling, due to the biquadratic interaction the effect of the anisotropy parameter on the entanglement will be suppressed at near-zero temperature. Moreover, the biquadratic interaction makes the threshold temperature increase. The effects of the external magnetic field on the thermal entanglement are also discussed, and it is observed that the entanglement revival phenomena exist in both models considered.展开更多
On the basis of the thin-shell theory and on the use of the transfer matrix approach, this paper presents the vibrational response and buckling analysis of three-lobed cross-section cylindrical shells, with circumfere...On the basis of the thin-shell theory and on the use of the transfer matrix approach, this paper presents the vibrational response and buckling analysis of three-lobed cross-section cylindrical shells, with circumferentially varying thickness, subjected to uniform axial membrane loads. A Fourier approach is used to separate the variables, and the governing equations of the shell are formulated in terms of eight first-order differential equations in the circumferential coordinate, and by using the transfer matrix of the shell, these equations are written in a matrix differential equation. The transfer matrix is derived from the non-linear differential equations of the cylindrical shells with variable thickness by introducing the trigonometric series in the longitudinal direction and applying a numerical integration in the circumferential direction. The natural frequencies and critical loads beside the mode shapes are calculated numerically in terms of the transfer matrix elements for the symmetrical and antisymmetrical vibration modes. The influences of the thickness variation of cross- section and radius展开更多
The sampled-grating distributed Bragg reflector(SGDBR) laser is a typical and important photonic integrated device,and has potential wide application to agile optical networks.A new dynamic model for this device has b...The sampled-grating distributed Bragg reflector(SGDBR) laser is a typical and important photonic integrated device,and has potential wide application to agile optical networks.A new dynamic model for this device has been developed,which combines the traveling-wave method for the active region and the transfer-matrix method for the passive sections into a single procedure.The behaviors of wave-length switching of the SGDBR laser,which include the transient spectrum and mode competition,have been studied in detail using this model.A new efficient way has been proposed to improve the wavelength switching performance only by increasing the coupling coefficients without changing the carrier density.展开更多
文摘The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the teleportation of an entangled state via a couple of quantum channels, which are composed of a spin-1/2 Heisenberg dimer in two infinite Ising–Heisenberg chains. The heterotrimetallic coordination polymer CuⅡMnⅡ(L1)][FeⅢ(bpb)(CN)2]·ClO4·H2O(abbreviated as Fe–Mn–Cu) can be regarded as an actual material for this chain.We apply the transfer-matrix approach to obtain the density operator for the Heisenberg dimer and use the standard teleportation protocol to derive the analytical expression of the density matrix of the output state and the average fidelity of the entanglement teleportation. We study the effects of the temperature T, anisotropy coupling parameter △, Heisenberg coupling parameter J2 and external magnetic field h on the quantum channels. The results show that anisotropy coupling? and Heisenberg coupling J2 can favor the generation of the output concurrence and expand the scope of the successful average fidelity.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the thermal entanglement of the spin-1 Ising-Heisenberg diamond chain, which can be regarded as a theoretical model for the homometallic molecular ferrimagnet [Ni_3(C_4H_2O_4)_2-(μ_3-OH)_2(H_2O)_4]n ·(2H_2O)n. Two cases,i.e., the isotropic Heisenberg(Ising-XXX) coupling model and anisotropic Heisenberg(Ising-XXZ) coupling model, are discussed respectively. The negativity is chosen as the measurement of the thermal entanglement. By means of the transfermatrix approach, we focus on the effects of biquadratic interaction parameters on the negativity of the infinite spin-1 Ising-Heisenberg diamond chain. In the Ising-XXX coupling model, it is shown that for the case with ferromagnetic coupling the thermal entanglement can be induced by the biquadratic interaction, but the external magnetic field will suppress the occurrence of the entanglement induced by the biquadratic interaction. In the Ising-XXZ coupling model,for the case with antiferromagnetic coupling, due to the biquadratic interaction the effect of the anisotropy parameter on the entanglement will be suppressed at near-zero temperature. Moreover, the biquadratic interaction makes the threshold temperature increase. The effects of the external magnetic field on the thermal entanglement are also discussed, and it is observed that the entanglement revival phenomena exist in both models considered.
文摘On the basis of the thin-shell theory and on the use of the transfer matrix approach, this paper presents the vibrational response and buckling analysis of three-lobed cross-section cylindrical shells, with circumferentially varying thickness, subjected to uniform axial membrane loads. A Fourier approach is used to separate the variables, and the governing equations of the shell are formulated in terms of eight first-order differential equations in the circumferential coordinate, and by using the transfer matrix of the shell, these equations are written in a matrix differential equation. The transfer matrix is derived from the non-linear differential equations of the cylindrical shells with variable thickness by introducing the trigonometric series in the longitudinal direction and applying a numerical integration in the circumferential direction. The natural frequencies and critical loads beside the mode shapes are calculated numerically in terms of the transfer matrix elements for the symmetrical and antisymmetrical vibration modes. The influences of the thickness variation of cross- section and radius
基金Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z427)State Key Development Program for Basic Research of China (Grant No. 2003CB314903)National Natural Science Foun-dation of China (Grant No. 60677024)
文摘The sampled-grating distributed Bragg reflector(SGDBR) laser is a typical and important photonic integrated device,and has potential wide application to agile optical networks.A new dynamic model for this device has been developed,which combines the traveling-wave method for the active region and the transfer-matrix method for the passive sections into a single procedure.The behaviors of wave-length switching of the SGDBR laser,which include the transient spectrum and mode competition,have been studied in detail using this model.A new efficient way has been proposed to improve the wavelength switching performance only by increasing the coupling coefficients without changing the carrier density.