Mass transfer between a bubble and the dense phase in gas fluidized beds of Group A and Group B particles was proposed based on previous experimental results and literature data. The mass transfer coefficient between ...Mass transfer between a bubble and the dense phase in gas fluidized beds of Group A and Group B particles was proposed based on previous experimental results and literature data. The mass transfer coefficient between bubbles and the dense phase was determined by kbe = 0.21 db. A theoretical analysis of the mass transfer coefficient between a bubble and the dense phase using diffusion equations showed that the mass transfer coefficient between a bubble and the dense phase is kbe α εmf√ub/db in both three- and two-dimensional fiuidized beds. An effective diffusion coefficient in gas fluidized beds was introduced and correlated with bubble size as De = 13.3db2.7 for Group A and Group B particles. The mass transfer coefficient kbe can then be expressed as kbe = 0.492εmf√ubdb1.7 for bubbles in a three-dimensional bed and kbe = 0.576εm√ubdb1.7 for bubbles in a two-dimensional bed.展开更多
基金an innovation research grant(13YZ130)a Leading Academic Discipline Project(J51803)from the Shanghai Education Committeea Cultivate Discipline Fund of the Shanghai Second Polytechnic University(XXKPY1303)
文摘Mass transfer between a bubble and the dense phase in gas fluidized beds of Group A and Group B particles was proposed based on previous experimental results and literature data. The mass transfer coefficient between bubbles and the dense phase was determined by kbe = 0.21 db. A theoretical analysis of the mass transfer coefficient between a bubble and the dense phase using diffusion equations showed that the mass transfer coefficient between a bubble and the dense phase is kbe α εmf√ub/db in both three- and two-dimensional fiuidized beds. An effective diffusion coefficient in gas fluidized beds was introduced and correlated with bubble size as De = 13.3db2.7 for Group A and Group B particles. The mass transfer coefficient kbe can then be expressed as kbe = 0.492εmf√ubdb1.7 for bubbles in a three-dimensional bed and kbe = 0.576εm√ubdb1.7 for bubbles in a two-dimensional bed.