The aim of this theoretical investigation is the description of the multicomponent mass transfer process in the Nano- Composites (NC)—novel materials with the bi-functional matrix. The new theoretical NC Model is ass...The aim of this theoretical investigation is the description of the multicomponent mass transfer process in the Nano- Composites (NC)—novel materials with the bi-functional matrix. The new theoretical NC Model is assigned for the modern theoretical investigations of the multicomponent mass transfer kinetics in the bi-functional NC materials. This NC Model for the multicomponent mass transfer in the bi-functional NC matrix includes into the consideration the proposed key conception—two co-existing routes: I—chemical reactions onto the active NC centers-sites, and II—diffusion mass transfer inside the bi-functional NC matrix. All the results are presented in the terms of the additional key concept: propagating multicomponent concentration waves (W+) in the NC matrix. The used W+ concept for the description of the multicomponent NC mass transfer kinetics give the clear interpretation of the computerized results. The mass transfer process in the NC matrix has been described theoretically by computerized simulation. The results of the calculations are new and illustrated by author’s animations showing visually the propagation of the multicomponent concentration waves (W) inside the various NC matrixes: r-beads, cylindrical ro-fibers, or planar L-membranes. Two variants of modeling for mass transfer diffusion kinetics in the bi-functional NC matrixes with one (Variant 1), or two (Variant 2) dissociation-association reactions at the active nano-sites (R0) are considered theoretically.展开更多
Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with...Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.展开更多
The radiative transfer model (RT3), a vector radiative transfer (VRT) scheme in a plane-parallel atmosphere, was bounded by a rough ocean surface in this study. The boundary problem was solved using a Fourier series d...The radiative transfer model (RT3), a vector radiative transfer (VRT) scheme in a plane-parallel atmosphere, was bounded by a rough ocean surface in this study. The boundary problem was solved using a Fourier series decomposition of the radiation field as a function of the azimuth. For the case of a rough ocean surface, the decomposition was obtained by developing both the Fresnel reflection matrix and the probability distribution of the water facet orientation as Fourier series. The effect of shadowing by ocean surface waves was also considered in the boundary condition. The VRT model can compute the intensity and degree of polarization of the light at the top of the atmosphere (TOA), the ocean surface, and any level of the atmosphere in the ocean-atmosphere system. The results obtained by our model are in good agreement with those computed by Ahmad’s model. The simulated results showed that the shadow effects of wave facets on the intensity and the degree of polarization are negligible except at the ocean surface near the grazing angle, possibly because we did not consider the effect of white caps.展开更多
文摘The aim of this theoretical investigation is the description of the multicomponent mass transfer process in the Nano- Composites (NC)—novel materials with the bi-functional matrix. The new theoretical NC Model is assigned for the modern theoretical investigations of the multicomponent mass transfer kinetics in the bi-functional NC materials. This NC Model for the multicomponent mass transfer in the bi-functional NC matrix includes into the consideration the proposed key conception—two co-existing routes: I—chemical reactions onto the active NC centers-sites, and II—diffusion mass transfer inside the bi-functional NC matrix. All the results are presented in the terms of the additional key concept: propagating multicomponent concentration waves (W+) in the NC matrix. The used W+ concept for the description of the multicomponent NC mass transfer kinetics give the clear interpretation of the computerized results. The mass transfer process in the NC matrix has been described theoretically by computerized simulation. The results of the calculations are new and illustrated by author’s animations showing visually the propagation of the multicomponent concentration waves (W) inside the various NC matrixes: r-beads, cylindrical ro-fibers, or planar L-membranes. Two variants of modeling for mass transfer diffusion kinetics in the bi-functional NC matrixes with one (Variant 1), or two (Variant 2) dissociation-association reactions at the active nano-sites (R0) are considered theoretically.
文摘Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-QN201)the National Natural Science Foundation of China (Grant No. 40805010)+2 种基金the National Basic Research Program of China (973 Program, Grant No. 2010CB 950804)Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2008BAC40B01)supported by a Post-doctoral Fellowship for Space Science and Application
文摘The radiative transfer model (RT3), a vector radiative transfer (VRT) scheme in a plane-parallel atmosphere, was bounded by a rough ocean surface in this study. The boundary problem was solved using a Fourier series decomposition of the radiation field as a function of the azimuth. For the case of a rough ocean surface, the decomposition was obtained by developing both the Fresnel reflection matrix and the probability distribution of the water facet orientation as Fourier series. The effect of shadowing by ocean surface waves was also considered in the boundary condition. The VRT model can compute the intensity and degree of polarization of the light at the top of the atmosphere (TOA), the ocean surface, and any level of the atmosphere in the ocean-atmosphere system. The results obtained by our model are in good agreement with those computed by Ahmad’s model. The simulated results showed that the shadow effects of wave facets on the intensity and the degree of polarization are negligible except at the ocean surface near the grazing angle, possibly because we did not consider the effect of white caps.