期刊文献+
共找到283,628篇文章
< 1 2 250 >
每页显示 20 50 100
基于Luby Transform码云存储系统性能和时间算法的研究
1
作者 陈海彬 《成都工业学院学报》 2024年第5期47-53,共7页
随着数据的快速增长,如何提高存储数据可靠性以及减少存取响应时间成了一个重要的问题,为提高云存储数据的可靠性和减少存取响应时间,对一种基于Luby Transform码的云存储方案在鲁棒孤子分布、泊松鲁棒孤子分布和复合泊松鲁棒孤子分布... 随着数据的快速增长,如何提高存储数据可靠性以及减少存取响应时间成了一个重要的问题,为提高云存储数据的可靠性和减少存取响应时间,对一种基于Luby Transform码的云存储方案在鲁棒孤子分布、泊松鲁棒孤子分布和复合泊松鲁棒孤子分布中的性能表现进行了研究,提出了一种时间改进方法,通过平衡成功解码概率和检索延迟减少数据检索时间。实验证明采用泊松鲁棒孤子分布和复合泊松鲁棒孤子分布的Luby Transform码的云存储方案更可靠、存储更快速,提出的时间改进方法与经典的鲁棒孤子分布度时间方法相比分别减少70%和67%的数据检索时间。 展开更多
关键词 云存储 Luby transform码 度分布
下载PDF
基于残差U-Net和自注意力Transformer编码器的磁场预测方法 被引量:1
2
作者 金亮 尹振豪 +2 位作者 刘璐 宋居恒 刘元凯 《电工技术学报》 EI CSCD 北大核心 2024年第10期2937-2952,共16页
利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型... 利用有限元方法对几何结构复杂的电机和变压器进行磁场分析,存在仿真时间长且无法复用的问题。因此,该文提出一种基于残差U-Net和自注意力Transformer编码器的磁场预测方法。首先建立永磁同步电机(PMSM)和非晶合金变压器(AMT)有限元模型,得到深度学习训练所需的数据集;然后将Transformer模块与U-Net模型结合,并引入短残差机制建立ResUnet-Transformer模型,通过预测图像的像素实现磁场预测;最后通过Targeted Dropout算法和动态学习率调整策略对模型进行优化,解决拟合问题并提高预测精度。计算实例证明,ResUnet-Transformer模型在PMSM和AMT数据集上测试集的平均绝对百分比误差(MAPE)均小于1%,且仅需500组样本。该文提出的磁场预测方法能减少实际工况和多工况下精细模拟和拓扑优化的时间和资源消耗,亦是虚拟传感器乃至数字孪生的关键实现方法之一。 展开更多
关键词 有限元方法 电磁场 深度学习 U-Net transformER
下载PDF
基于多模态掩码Transformer网络的社会事件分类
3
作者 陈宏 钱胜胜 +2 位作者 李章明 方全 徐常胜 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期579-587,共9页
多模态社会事件分类的关键是充分且准确地利用图像和文字2种模态的特征。然而,现有的大多数方法存在以下局限性:简单地将事件的图像特征和文本特征连接起来,不同模态之间存在不相关的上下文信息导致相互干扰。因此,仅仅考虑多模态数据... 多模态社会事件分类的关键是充分且准确地利用图像和文字2种模态的特征。然而,现有的大多数方法存在以下局限性:简单地将事件的图像特征和文本特征连接起来,不同模态之间存在不相关的上下文信息导致相互干扰。因此,仅仅考虑多模态数据模态间的关系是不够的,还要考虑模态之间不相关的上下文信息(即区域或单词)。为克服这些局限性,提出一种新颖的基于多模态掩码Transformer网络(MMTN)模型的社会事件分类方法。通过图-文编码网络来学习文本和图像的更好的表示。将获得的图像和文本表示输入多模态掩码Transformer网络来融合多模态信息,并通过计算多模态信息之间的相似性,对多模态信息的模态间的关系进行建模,掩盖模态之间的不相关上下文。在2个基准数据集上的大量实验表明:所提模型达到了最先进的性能。 展开更多
关键词 多模态 社会事件分类 社交媒体 表示学习 多模态transformer网络
下载PDF
FMA-DETR:一种无编码器的Transformer目标检测方法
4
作者 周全 倪英豪 +2 位作者 莫玉玮 康彬 张索非 《信号处理》 CSCD 北大核心 2024年第6期1160-1170,共11页
DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导... DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导致网络优化变得困难,模型收敛速度缓慢。本文设计了一种无编码器的Transformer目标检测网络模型。由于不需要引入Transformer编码器,本文的模型比DETR参数量更小、计算量更低、模型收敛速度更快。但是,直接去除Transformer编码器将降低网络的表达能力,导致Transformer解码器无法从数量庞大的图像特征中关注到包含目标的图像特征,从而使检测性能大幅降低。为了缓解这个问题,本文提出了一种混合特征注意力(fusion-feature mixing attention,FMA)机制,它通过自适应特征混合和通道交叉注意力弥补检测网络特征表达能力的下降,将其应用于Transformer解码器可以减轻由于去除Transformer编码器带来的性能降低。在MS-COCO数据集上,本文网络模型(称为FMA-DETR)实现了与DETR相近的性能表现,同时本文的模型拥有更快的收敛速度、更小的参数量以及更低的计算量。本文还进行了大量消融实验来验证所提出方法的有效性。 展开更多
关键词 目标检测 transformER DETR 混合注意力
下载PDF
基于CNN和Transformer并行编码的腹部多器官图像分割
5
作者 赵欣 李森 李智生 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1145-1154,共10页
针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transf... 针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transformer和块间Transformer的组合,既捕获了全局的长距离依赖信息又降低了计算量;再次,设计特征融合模块,以融合来自两条编码分支的上下文信息;最后,设计解码模块,实现全局信息与局部上下文信息的交互,更好地补偿解码阶段的信息损失.在Synapse多器官CT数据集上进行实验,与目前9种先进方法相比,在平均Dice相似系数(DSC)和Hausdorff距离(HD)指标上都达到了最佳性能,分别为83.10%和17.80 mm. 展开更多
关键词 多器官图像分割 分块transformer 特征融合
下载PDF
联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型
6
作者 李广丽 叶艺源 +3 位作者 吴光庭 李传秀 吕敬钦 张红斌 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2369-2381,共13页
乳腺癌是女性最常见的癌症.单一网络在乳腺癌病理图像分类中存在缺陷,卷积神经网络无法提取全局上下文,而Transformer不能准确描述局部细节.本文提出联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型(Multi-View Tra... 乳腺癌是女性最常见的癌症.单一网络在乳腺癌病理图像分类中存在缺陷,卷积神经网络无法提取全局上下文,而Transformer不能准确描述局部细节.本文提出联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型(Multi-View Transformer Online Fusion Mutual Learning,MVT-OFML).采用ResNet-50(Residual Network-50)提取图像局部特征,设计多视角Transformer编码模块,捕获图像中全局上下文;联合Logits和中间特征层构建OFML框架,实现ResNet-50与多视角Transformer编码模块间双向传递知识,使2个网络优势互补以完成乳腺癌病理图像分类.实验表明,在BreakHis和BACH数据集上,MVT-OFML的准确率比最强基线分别提升0.90%和2.26%,F1均值比最强基线分别提升4.75%和3.21%. 展开更多
关键词 乳腺癌 病理图像分类 多视角transformer 卷积神经网络 在线融合互学习
下载PDF
基于Transformer紧凑编码的局部近重复视频检测算法
7
作者 王萍 余圳煌 鲁磊 《计算机科学》 CSCD 北大核心 2024年第5期108-116,共9页
针对现有局部近重复视频检测算法特征存储消耗大、整体查询效率低、提取特征时并未考虑近重复帧之间细微的语义差异等问题,文中提出了一种基于Transformer紧凑编码的局部近重复视频检测算法。首先,提出了一个基于Transformer的特征编码... 针对现有局部近重复视频检测算法特征存储消耗大、整体查询效率低、提取特征时并未考虑近重复帧之间细微的语义差异等问题,文中提出了一种基于Transformer紧凑编码的局部近重复视频检测算法。首先,提出了一个基于Transformer的特征编码器,其学习了大量近重复帧之间细微的语义差异,可以在编码帧特征时对各个区域特征图引入自注意力机制,在有效降低帧特征维度的同时也提高了编码后特征的表示性。该特征编码器通过孪生网络训练得到,该网络不需要负样本就可以有效学习近重复帧之间的相似语义信息,因此无需沉重和困难的难负样本标注工作,使得训练过程更加简易和高效。其次,提出了一个基于视频自相似度矩阵的关键帧提取方法,可以从视频中提取丰富但不冗余的关键帧,从而使关键帧特征序列能够更全面地描述原视频内容,提升算法的性能,同时也大幅减少了存储和计算冗余关键帧带来的开销。最后,基于关键帧的低维紧凑编码特征,采用基于图网络的时间对齐算法,实现局部近重复视频片段的检测和定位。该算法在公开的局部近重复视频检测数据集VCDB上取得了优于现有算法的实验性能。 展开更多
关键词 局部近重复视频检测 transformER 视频自相似度矩阵 关键帧提取
下载PDF
基于视觉Transformer和双解码器的红外小目标检测方法
8
作者 代少升 刘科生 +3 位作者 黄炼 贺自强 毛兴华 任汶皓 《红外技术》 CSCD 北大核心 2024年第9期1070-1080,共11页
当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Tran... 当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Transformer作为编码器,能够有效地提取红外小目标图像的多尺度特征。视觉Transformer是一种新兴的深度学习架构,其通过自注意力机制捕捉图像中像素之间的全局关系,以处理长程依赖性和上下文信息。此外,本文还设计了一个由交互式解码器和辅助解码器组成的双解码器模块,旨在提高解码器对红外小目标的重构能力。该双解码器模块能够充分利用不同特征之间的互补信息,促进深层特征和浅层特征之间的交互,并通过将两个解码器的结果进行叠加,以更好地重构红外小目标。在广泛使用的公共数据集上的实验结果表明,本文提出的方法在F1和mIoU两个评价指标上的性能优于其他对比方法。 展开更多
关键词 红外小目标检测 视觉transformer 多尺度特征融合 编解结构
下载PDF
一种基于Transformer编码器与LSTM的飞机轨迹预测方法
9
作者 李明阳 鲁之君 +1 位作者 曹东晶 曹世翔 《航天返回与遥感》 CSCD 北大核心 2024年第2期163-176,共14页
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和... 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。 展开更多
关键词 轨迹预测 transformer编 神经网络 飞机目标 transformer-Encoder-LSTM模型
下载PDF
基于Transformer编码器和残差网络的信贷违约预测模型
10
作者 张瑶娜 卓佩妍 +2 位作者 刘自金 刘炜 宋友 《计算机应用》 CSCD 北大核心 2024年第S01期324-329,共6页
针对传统信贷违约预测模型对高维稀疏类别特征缺乏有效处理,性能受到人工特征工程影响较大的问题,提出一种基于Transformer编码器和残差网络的信贷违约预测模型(TE-ResNet)。该模型首先利用嵌入层对类别特征进行处理,将它们转化为低维... 针对传统信贷违约预测模型对高维稀疏类别特征缺乏有效处理,性能受到人工特征工程影响较大的问题,提出一种基于Transformer编码器和残差网络的信贷违约预测模型(TE-ResNet)。该模型首先利用嵌入层对类别特征进行处理,将它们转化为低维度的稠密向量;然后将连续特征和嵌入后的类别特征连接,输入到堆叠的Transformer编码器中进行特征提取,捕捉输入特征之间的关系,得到有用信息的高层特征表示;最后使用结合了通道注意力机制的一维残差网络模型进行违约预测。在训练过程中,模型采用加权交叉熵损失函数,以解决信贷数据不平衡的问题。实验结果表明,与8种主流基准模型的最佳表现相比,TE-ResNet在LendingClub数据集、天池贷款数据集上的各项指标均有提升:AUC指标分别提升了0.58%和2.85%,F1-Score指标分别提升了0.85%和11.92%,G-mean指标分别提升了2.94%和16.19%。TE-ResNet能够提高信贷违约预测的性能,减少人工特征工程,实现端到端的学习。因此,TE-ResNet模型具有实际应用的潜力,并可为信贷业务提供更加精确和可靠的风险评估服务。 展开更多
关键词 深度学习 残差网络 transformER 注意力机制 信贷违约预测
下载PDF
融合双阶段特征与Transformer编码的交互式图像分割
11
作者 封筠 张天 +2 位作者 史屹琛 王辉 胡晶晶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第6期831-843,共13页
为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文... 为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文信息;然后使用点击交互的方式引入主观先验知识,依次通过初级与加强阶段将交互特征融入Transformer网络;最后结合空洞卷积、注意力机制和多层感知机对骨干网络获取的特征图解码.实验结果表明,所提算法在GrabCut,Berkeley和DAVIS数据集上的mNoC@90%值分别达到2.18,4.04和7.39,优于其他对比算法;且算法的时间与空间复杂度低于f-BRS-B,对交互点击位置及点击类型的扰动变化具有较好的稳定性,说明该算法能够快速、精确与稳定地分割用户感兴趣目标,提升用户交互的使用体验感. 展开更多
关键词 交互式图像分割 深度学习 transformer编 交互特征融合 轻量化网络
下载PDF
基于Transformer_LSTM编解码器模型的船舶轨迹异常检测方法 被引量:1
12
作者 李可欣 郭健 +3 位作者 李冉冲 王宇君 李宗明 缪坤 《中国舰船研究》 CSCD 北大核心 2024年第2期223-232,共10页
[目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于... [目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于编码器解码器架构,由Transformer_LSTM模块替代传统神经网络实现轨迹特征提取和轨迹重构;将Transformer嵌入LSTM的递归机制,结合循环单元和注意力机制,利用自注意力和交叉注意力实现对循环单元状态向量的计算,实现对长序列模型的有效构建;通过最小化重构输出和原始输入之间的差异,使模型学习一般轨迹的特征和运动模式,将重构误差大于异常阈值的轨迹判定为异常轨迹。[结果]采用2021年1月的船舶AIS数据进行实验,结果表明,模型在准确率、精确率以及召回率上相较于LOF,DBSCAN,VAE,LSTM等经典模型有着明显提升;F1分数相较于VAE_LSTM模型提升约8.11%。[结论]该方法的异常检测性能在各项指标上显著优于传统算法,可有效、可靠地运用于海上船舶轨迹异常检测。 展开更多
关键词 异常检测 深度学习 器解 transformER 长短期记忆 轨迹重建
下载PDF
基于DRSN融合Transformer编码器的轴承故障诊断方法研究
13
作者 陈松 陈文华 张文广 《自动化与仪表》 2024年第5期103-108,共6页
针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的... 针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的噪声信息,并使用注意力机制增强提取到的特征;然后,采用Transformer编码器来进一步解决振动信号中的长期依赖性问题;最后,利用Softmax函数实现多故障模式识别。在凯斯西储大学轴承数据集上通过不同噪声等级对提出的模型进行测试,实验结果表明,该方法实现了对轴承故障分类,强噪声环境下准确率更高,训练时间更快。 展开更多
关键词 故障诊断 轴承 深度残差收缩网络 transformer编
下载PDF
基于Transformer的多编码器端到端语音识别 被引量:1
14
作者 庞江飞 孙占全 《电子科技》 2024年第4期1-7,共7页
当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征... 当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征信息的捕捉,弥补浅层Transformer对局部特征信息的忽视,有效实现音频特征序列全局和局部依赖关系的融合,即提出了基于Transformer的多编码器模型。在开源中文普通话数据集Aishell-1上的实验表明,在没有外部语言模型的情况下,相比于Transformer模型,基于Transformer的多编码器模型的字符错误率降低了4.00%。在内部非公开的上海话方言数据集上,文中所提模型的性能提升更加明显,其字符错误率从19.92%降低至10.31%,降低了48.24%。 展开更多
关键词 transformER 语音识别 端到端 深度神经网络 多编 多头注意力 特征融合 卷积分支网络
下载PDF
改进的密集视频描述Transformer译码算法
15
作者 杨大伟 盘晓芳 +1 位作者 毛琳 张汝波 《计算机工程与应用》 CSCD 北大核心 2024年第17期89-97,共9页
当Transformer应用于密集视频描述时,历史文本特征会对后续文本生成产生干扰,难以捕捉视频动态信息从而影响描述的连贯性和准确性。为保持上下文一致性的同时又能缓解历史文本干扰,提出改进的密集视频描述Transformer译码算法(D-Uformer... 当Transformer应用于密集视频描述时,历史文本特征会对后续文本生成产生干扰,难以捕捉视频动态信息从而影响描述的连贯性和准确性。为保持上下文一致性的同时又能缓解历史文本干扰,提出改进的密集视频描述Transformer译码算法(D-Uformer)。该算法利用前馈神经网络(FNN)增强历史文本特征表达,通过跳跃连接构建删除冗余支路和增强补足支路,利用减法降低历史文本特征过度聚焦导致描述不准确的影响,提高模型对输入视频特征的关注度;同时,利用加法弥补特征传递过程中丢失的上下文信息,生成准确且连贯表达当前视频内容的描述语句。在ActivityNet和Charades数据集上的实验结果表明,D-Uformer算法的描述性能提升明显,与视频多样性描述网络(TDPC)相比,准确性最高提升4.816%,多样性最高提升4.167%,生成的描述不仅更贴合视频内容,且更符合人类语言习惯。 展开更多
关键词 密集视频描述 transformer网络 前馈神经网络 跳跃连接
下载PDF
基于预训练Transformer语言模型的源代码剽窃检测研究
16
作者 钱亮宏 王福德 孙晓海 《吉林大学学报(信息科学版)》 CAS 2024年第4期747-753,共7页
为解决源代码剽窃检测的问题,以及针对现有方法需要大量训练数据且受限于特定语言的不足,提出了一种基于预训练Transformer语言模型的源代码剽窃检测方法,其结合了词嵌入,相似度计算和分类模型。该方法支持多种编程语言,不需要任何标记... 为解决源代码剽窃检测的问题,以及针对现有方法需要大量训练数据且受限于特定语言的不足,提出了一种基于预训练Transformer语言模型的源代码剽窃检测方法,其结合了词嵌入,相似度计算和分类模型。该方法支持多种编程语言,不需要任何标记为剽窃的训练样本,即可达到较好的检测性能。实验结果表明,该方法在多个公开数据集上取得了先进的检测效果,F1值接近。同时,对特定的能获取到较少标记为剽窃训练样本的场景,还提出了一种结合有监督学习分类模型的方法,进一步提升了检测效果。该方法能广泛应用于缺乏训练数据、计算资源有限以及语言多样的源代码剽窃检测场景。 展开更多
关键词 源代剽窃检测 transformER 模型 预训练模型 机器学习 深度学习
下载PDF
基于CNN-Transformer的自编码器红外和可见光图像融合方法
17
作者 李霖 沈永健 +2 位作者 张鹏宇 原昊 王超 《遥测遥控》 2024年第5期109-119,共11页
基于自编码器的图像融合模型因无需手动设计融合规则而受到更多关注。然而,该融合网络编码器采用的卷积神经网络仅对局部感受野敏感,无法提取图像全局特征,且缺乏从红外图像和可见光图像中提取独特特征的能力。本文构建了一种基于自动... 基于自编码器的图像融合模型因无需手动设计融合规则而受到更多关注。然而,该融合网络编码器采用的卷积神经网络仅对局部感受野敏感,无法提取图像全局特征,且缺乏从红外图像和可见光图像中提取独特特征的能力。本文构建了一种基于自动编码器的新型图像融合网络,该网络由编码器模块、融合模块和解码器模块组成。在编码器模块中,结合使用CNN和Transformer模块以同时捕捉原图像的局部和全局特征。此外,为提取原图像特定信息,分别为原红外和可见光图像设计对比度增强和梯度增强模块。编码器模块获得的特征图像经融合模块串联后输入解码器模块,从而获得融合图像。在三个数据集上的实验结果表明,本文提出的融合网络能较好地保留了红外图像和可见光图像的清晰目标和细节信息,在主观和客观评价方面均优于其他先进方法。同时,本文提出的网络所获得的融合图像在目标检测中获得了最高的平均精度,证明图像融合有利于下游任务。 展开更多
关键词 图像融合 卷积神经网络 transformER 红外图像 可见光图像
下载PDF
基于Transformer的多尺度工件编码识别算法
18
作者 熊新炎 马宏伟 张良 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第5期536-543,共8页
提出了一种基于Transformer结构的多尺度工件编码识别算法,旨在解决当前工件编码识别中存在的挑战与局限性.描述了多尺度特征提取和融合的实现方法,重点介绍了Transformer模块的优化策略.通过卷积和池化操作获得了一组在不同尺度和层级... 提出了一种基于Transformer结构的多尺度工件编码识别算法,旨在解决当前工件编码识别中存在的挑战与局限性.描述了多尺度特征提取和融合的实现方法,重点介绍了Transformer模块的优化策略.通过卷积和池化操作获得了一组在不同尺度和层级上的特征,针对这些特征引入了一个创新的缩放因子,用于调整Transformer模块中的注意力权重,更精确地捕捉和融合不同尺度的特征信息.提出了缩放因子计算方法,该方法直接依赖于查询(Query)和键(Key)的信息,可以更为直观地反映出不同尺度特征在注意力计算中的重要性.实验结果表明,此方法在处理多尺度工件编码特征时表现出了较高的准确率和稳健性,可有效提升工件编码识别的性能. 展开更多
关键词 工件编 多尺度特征 缩放因子 注意力权重 特征融合 transformER
下载PDF
基于Transformer的多方面特征编码图像描述生成算法 被引量:4
19
作者 衡红军 范昱辰 王家亮 《计算机工程》 CAS CSCD 北大核心 2023年第2期199-205,共7页
由目标检测算法提取的目标特征在图像描述生成任务中发挥重要作用,但仅使用对图像进行目标检测的特征作为图像描述任务的输入会导致除关键目标信息以外的其余信息获取缺失,且生成的文本描述对图像内目标之间的关系缺乏准确表达。针对上... 由目标检测算法提取的目标特征在图像描述生成任务中发挥重要作用,但仅使用对图像进行目标检测的特征作为图像描述任务的输入会导致除关键目标信息以外的其余信息获取缺失,且生成的文本描述对图像内目标之间的关系缺乏准确表达。针对上述不足,提出用于编码图像内目标特征的目标Transformer编码器,以及用于编码图像内关系特征的转换窗口Transformer编码器,从不同角度对图像内不同方面的信息进行联合编码。通过拼接方法将目标Transformer编码的目标特征与转换窗口Transformer编码的关系特征相融合,达到图像内部关系特征和局部目标特征融合的目的,最终使用Transformer解码器将融合后的编码特征解码生成对应的图像描述。在MS-COCO数据集上进行实验,结果表明,所构建模型性能明显优于基线模型,BLEU-4、METEOR、ROUGE-L、CIDEr指标分别达到38.6%、28.7%、58.2%和127.4%,优于传统图像描述网络模型,能够生成更详细准确的图像描述。 展开更多
关键词 图像描述 转换窗口 多头注意力机制 多模态任务 transformer编
下载PDF
基于时空特征学习Transformer的运动想象脑电解码方法 被引量:2
20
作者 宋耀莲 殷喜喆 杨俊 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期313-321,共9页
脑电图(Electroencephalography,EEG)可记录来自大脑皮层的电信息,反映了脑活动中神经细胞放电产生的电场变化情况.EEG的空间信息和时间信息对于运动想象脑电(Motor Imagery Electroencephalogram,MI-EEG)解码分类模型学习判别特征至关... 脑电图(Electroencephalography,EEG)可记录来自大脑皮层的电信息,反映了脑活动中神经细胞放电产生的电场变化情况.EEG的空间信息和时间信息对于运动想象脑电(Motor Imagery Electroencephalogram,MI-EEG)解码分类模型学习判别特征至关重要,但过度依赖预处理和手工特征提取,导致对EEG数据进行信号分类较为困难.尽管深度学习已经在很多领域实现了自动特征提取,但脑电图的深度学习尚未完成.提出基于FBCSP (Filter Bank Common Spatial Patterns)和Transformer模型的时空特征学习的运动想象脑电解码方法.针对FBCSP滤波的脑电信号,依次通过空间维度和时间维度上的注意力转换来获取空间和时间特征,然后通过Softmax函数对不同类别的EEG数据进行分类.实验结果表明,在BCI竞赛数据集IV-2a上,该方法的分类准确率可达84.16%,为MI脑电信号分类提供了新思路. 展开更多
关键词 运动想象 脑电图(EEG) 注意力 transformer模型
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部