为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和...为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。展开更多
为了解决Transformer编码器在行人重识别中因图像块信息丢失以及行人局部特征表达不充分导致模型识别准确率低的问题,本文提出改进型Transformer编码器和特征融合的行人重识别算法。针对Transformer在注意力运算时会丢失行人图像块相对...为了解决Transformer编码器在行人重识别中因图像块信息丢失以及行人局部特征表达不充分导致模型识别准确率低的问题,本文提出改进型Transformer编码器和特征融合的行人重识别算法。针对Transformer在注意力运算时会丢失行人图像块相对位置信息的问题,引入相对位置编码,促使网络关注行人图像块语义化的特征信息,以增强行人特征的提取能力。为了突出包含行人区域的显著特征,将局部patch注意力机制模块嵌入到Transformer网络中,对局部关键特征信息进行加权强化。最后,利用全局与局部信息特征融合实现特征间的优势互补,提高模型识别能力。训练阶段使用Softmax及三元组损失函数联合优化网络,本文算法在Market1501和DukeMTMC⁃reID两大主流数据集中评估测试,Rank⁃1指标分别达到97.5%和93.5%,平均精度均值(mean Average precision,mAP)分别达到92.3%和83.1%,实验结果表明改进型Transformer编码器和特征融合算法能够有效提高行人重识别的准确率。展开更多
文摘为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。
文摘为了解决Transformer编码器在行人重识别中因图像块信息丢失以及行人局部特征表达不充分导致模型识别准确率低的问题,本文提出改进型Transformer编码器和特征融合的行人重识别算法。针对Transformer在注意力运算时会丢失行人图像块相对位置信息的问题,引入相对位置编码,促使网络关注行人图像块语义化的特征信息,以增强行人特征的提取能力。为了突出包含行人区域的显著特征,将局部patch注意力机制模块嵌入到Transformer网络中,对局部关键特征信息进行加权强化。最后,利用全局与局部信息特征融合实现特征间的优势互补,提高模型识别能力。训练阶段使用Softmax及三元组损失函数联合优化网络,本文算法在Market1501和DukeMTMC⁃reID两大主流数据集中评估测试,Rank⁃1指标分别达到97.5%和93.5%,平均精度均值(mean Average precision,mAP)分别达到92.3%和83.1%,实验结果表明改进型Transformer编码器和特征融合算法能够有效提高行人重识别的准确率。
文摘针对现有方法在腹部中小器官图像分割性能方面存在的不足,提出一种基于局部和全局并行编码的网络模型用于腹部多器官图像分割.首先,设计一种提取多尺度特征信息的局部编码分支;其次,全局特征编码分支采用分块Transformer,通过块内Transformer和块间Transformer的组合,既捕获了全局的长距离依赖信息又降低了计算量;再次,设计特征融合模块,以融合来自两条编码分支的上下文信息;最后,设计解码模块,实现全局信息与局部上下文信息的交互,更好地补偿解码阶段的信息损失.在Synapse多器官CT数据集上进行实验,与目前9种先进方法相比,在平均Dice相似系数(DSC)和Hausdorff距离(HD)指标上都达到了最佳性能,分别为83.10%和17.80 mm.