期刊文献+
共找到627篇文章
< 1 2 32 >
每页显示 20 50 100
FMA-DETR:一种无编码器的Transformer目标检测方法 被引量:1
1
作者 周全 倪英豪 +2 位作者 莫玉玮 康彬 张索非 《信号处理》 CSCD 北大核心 2024年第6期1160-1170,共11页
DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导... DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导致网络优化变得困难,模型收敛速度缓慢。本文设计了一种无编码器的Transformer目标检测网络模型。由于不需要引入Transformer编码器,本文的模型比DETR参数量更小、计算量更低、模型收敛速度更快。但是,直接去除Transformer编码器将降低网络的表达能力,导致Transformer解码器无法从数量庞大的图像特征中关注到包含目标的图像特征,从而使检测性能大幅降低。为了缓解这个问题,本文提出了一种混合特征注意力(fusion-feature mixing attention,FMA)机制,它通过自适应特征混合和通道交叉注意力弥补检测网络特征表达能力的下降,将其应用于Transformer解码器可以减轻由于去除Transformer编码器带来的性能降低。在MS-COCO数据集上,本文网络模型(称为FMA-DETR)实现了与DETR相近的性能表现,同时本文的模型拥有更快的收敛速度、更小的参数量以及更低的计算量。本文还进行了大量消融实验来验证所提出方法的有效性。 展开更多
关键词 目标检测 transformer 编码 DETR 混合注意力
下载PDF
一种基于Transformer编码器与LSTM的飞机轨迹预测方法 被引量:1
2
作者 李明阳 鲁之君 +1 位作者 曹东晶 曹世翔 《航天返回与遥感》 CSCD 北大核心 2024年第2期163-176,共14页
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和... 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。 展开更多
关键词 轨迹预测 transformer编码 神经网络 飞机目标 transformer-Encoder-LSTM模型
下载PDF
融合双阶段特征与Transformer编码的交互式图像分割
3
作者 封筠 张天 +2 位作者 史屹琛 王辉 胡晶晶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第6期831-843,共13页
为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文... 为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文信息;然后使用点击交互的方式引入主观先验知识,依次通过初级与加强阶段将交互特征融入Transformer网络;最后结合空洞卷积、注意力机制和多层感知机对骨干网络获取的特征图解码.实验结果表明,所提算法在GrabCut,Berkeley和DAVIS数据集上的mNoC@90%值分别达到2.18,4.04和7.39,优于其他对比算法;且算法的时间与空间复杂度低于f-BRS-B,对交互点击位置及点击类型的扰动变化具有较好的稳定性,说明该算法能够快速、精确与稳定地分割用户感兴趣目标,提升用户交互的使用体验感. 展开更多
关键词 交互式图像分割 深度学习 transformer编码 交互特征融合 轻量化网络
下载PDF
基于DRSN融合Transformer编码器的轴承故障诊断方法研究
4
作者 陈松 陈文华 张文广 《自动化与仪表》 2024年第5期103-108,共6页
针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的... 针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的噪声信息,并使用注意力机制增强提取到的特征;然后,采用Transformer编码器来进一步解决振动信号中的长期依赖性问题;最后,利用Softmax函数实现多故障模式识别。在凯斯西储大学轴承数据集上通过不同噪声等级对提出的模型进行测试,实验结果表明,该方法实现了对轴承故障分类,强噪声环境下准确率更高,训练时间更快。 展开更多
关键词 故障诊断 轴承 深度残差收缩网络 transformer编码
下载PDF
基于Transformer的多编码器端到端语音识别 被引量:1
5
作者 庞江飞 孙占全 《电子科技》 2024年第4期1-7,共7页
当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征... 当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征信息的捕捉,弥补浅层Transformer对局部特征信息的忽视,有效实现音频特征序列全局和局部依赖关系的融合,即提出了基于Transformer的多编码器模型。在开源中文普通话数据集Aishell-1上的实验表明,在没有外部语言模型的情况下,相比于Transformer模型,基于Transformer的多编码器模型的字符错误率降低了4.00%。在内部非公开的上海话方言数据集上,文中所提模型的性能提升更加明显,其字符错误率从19.92%降低至10.31%,降低了48.24%。 展开更多
关键词 transformer 语音识别 端到端 深度神经网络 编码 多头注意力 特征融合 卷积分支网络
下载PDF
融合模体感知和图Transformer编码的社区检测
6
作者 郭兴君 李晓红 +1 位作者 史婉媱 高文超 《计算机工程与科学》 CSCD 北大核心 2024年第11期2081-2090,共10页
针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵... 针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵。同时,使用混阶外切边编码获取原图的残留边信息,解决碎片问题,利用位置编码和内权边编码捕获重构图上的位置信息和边信息。其次,使用图Transformer提取原图携带的初始特征,再对编码所得的位置信息和边信息及初始特征进行融合,获得模体嵌入矩阵,实现社区检测。最后,在几个不同数据集上的实验结果表明,所提方法可以有效提高社区检测的性能,而且,对重叠社区检测和多社区公共顶点检测也是有效的。 展开更多
关键词 社区检测 transformer 模体 编码
下载PDF
基于Transformer的多尺度工件编码识别算法
7
作者 熊新炎 马宏伟 张良 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第5期536-543,共8页
提出了一种基于Transformer结构的多尺度工件编码识别算法,旨在解决当前工件编码识别中存在的挑战与局限性.描述了多尺度特征提取和融合的实现方法,重点介绍了Transformer模块的优化策略.通过卷积和池化操作获得了一组在不同尺度和层级... 提出了一种基于Transformer结构的多尺度工件编码识别算法,旨在解决当前工件编码识别中存在的挑战与局限性.描述了多尺度特征提取和融合的实现方法,重点介绍了Transformer模块的优化策略.通过卷积和池化操作获得了一组在不同尺度和层级上的特征,针对这些特征引入了一个创新的缩放因子,用于调整Transformer模块中的注意力权重,更精确地捕捉和融合不同尺度的特征信息.提出了缩放因子计算方法,该方法直接依赖于查询(Query)和键(Key)的信息,可以更为直观地反映出不同尺度特征在注意力计算中的重要性.实验结果表明,此方法在处理多尺度工件编码特征时表现出了较高的准确率和稳健性,可有效提升工件编码识别的性能. 展开更多
关键词 工件编码 多尺度特征 缩放因子 注意力权重 特征融合 transformer
下载PDF
基于深层双向Transformer编码器的早期谣言检测 被引量:2
8
作者 琚心怡 《信息通信》 2020年第5期17-22,共6页
微博、Twitter等网络社交平台的发展彻底改变了人们的交流方式,但是在方便人们获取最新信息的同时,谣言和虚假信息的广泛传播给个人、社会甚至国家所带来的危害也在日益加剧。由于信息的传播速度极快,希望通过人工检测的方法及时发现谣... 微博、Twitter等网络社交平台的发展彻底改变了人们的交流方式,但是在方便人们获取最新信息的同时,谣言和虚假信息的广泛传播给个人、社会甚至国家所带来的危害也在日益加剧。由于信息的传播速度极快,希望通过人工检测的方法及时发现谣言和虚假信息是不现实的,因此谣言的自动检测成为近年来的研究热点。现有的谣言检测方法主要是通过提取多特征用于分类,但这并不适合谣言的早期检测;此外,对于长文本信息,常用的循环神经网络(RNN)和卷积神经网络(CNN)也不能很好的理解语义。为解决现有的谣言检测研究中存在的问题,文章提出了一种新的谣言检测方法,通过分析文本的内容特征来实现谣言的早期检测任务。本文借鉴预训练的思想,进一步提高谣言检测模型的检测的时效性,并且采用了深层双向的Transformer编码器用于特征提取,有效地解决了长文本的远距离特性依赖问题,使得模型能更加准确地理解语义,提高检测的准确率。此外,为进一步提升模型的检测性能,本文还对原始数据做了数据增强处理。本文在Twitter谣言数据集和FakeNewsNet虚假新闻数据集上进行了实验,结果表明,本文提出的谣言检测模型的准确率和F1-评测值都要优于当前的基准模型。 展开更多
关键词 网络平台 谣言检测 transformer编码 预训练 数据增强
下载PDF
基于Transformer的多尺度遥感语义分割网络 被引量:1
9
作者 邵凯 王明政 王光宇 《智能系统学报》 CSCD 北大核心 2024年第4期920-929,共10页
为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器... 为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器和解码器2个部分组成,编码器包含基于Transformer改进的视觉注意网络(visual attention network,VAN)主干和基于空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)结构改进的多尺度语义特征提取模块(multi-scale semantic feature extraction module, MSFEM)。解码器采用轻量级多层感知器(multi-layer perception,MLP)配合编码器设计,充分分析所提取的包含全局上下文信息和多尺度表示的语义特征。MSTNet在2个高分辨率遥感语义分割数据集ISPRS Potsdam和LoveDA上进行验证,平均交并比(mIoU)分别达到79.50%和54.12%,平均F1-score(m F1)分别达到87.46%和69.34%,实验结果验证了本文所提方法有效提升了遥感图像语义分割的效果。 展开更多
关键词 遥感图像 语义分割 卷积神经网络 transformer 全局上下文信息 多尺度感受野 编码 解码器
下载PDF
融合Transformer和卷积LSTM的轨迹分类网络 被引量:1
10
作者 夏英 陈航 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期29-38,共10页
为了减少原始轨迹数据的噪声,充分提取轨迹的时空特征,提高基于轨迹数据的交通模式分类精度,提出一种融合堆叠降噪自编码器、Transformer和卷积长短期记忆网络的轨迹分类网络(networks fusing stacked denoising auto-encoder, Transfor... 为了减少原始轨迹数据的噪声,充分提取轨迹的时空特征,提高基于轨迹数据的交通模式分类精度,提出一种融合堆叠降噪自编码器、Transformer和卷积长短期记忆网络的轨迹分类网络(networks fusing stacked denoising auto-encoder, Transformer and ConvLSTM,SDAETC)。通过堆叠降噪自编码器减少原始轨迹数据中的噪声;利用结合了Transformer的递归图自编码器,提取到更为丰富的时间特征,同时利用特征图自编码器提取空间特征;改进卷积长短期记忆网络,充分提取轨迹中的时空特征,并与提取到的时间特征和空间特征相融合,从而实现交通模式分类。实验结果表明,提出的SDAETC与基线模型相比,在GeoLife和SHL数据集上的准确率分别提升了1.8%和2%。此外,消融实验结果和模型训练时间分析表明,引入堆叠降噪自编码器、Transfomer和ConvLSTM虽然增加了时间消耗,但是对分类精度有积极贡献。 展开更多
关键词 轨迹数据 交通方式分类 时空特征 堆叠降噪自编码 transformer 卷积长短期记忆网络
下载PDF
基于改进Transformer的滚动轴承剩余寿命预测方法
11
作者 温江涛 张哲 《燕山大学学报》 CAS 北大核心 2024年第4期312-321,共10页
针对现有的滚动轴承剩余使用寿命预测方法存在预测准确度不足、训练效率不高等问题,提出一种时频分析结合改进Transformer的轴承剩余使用寿命预测方法。首先用短时傅里叶变换提取轴承的时频特征,为了改善Transformer的特征提取能力,研... 针对现有的滚动轴承剩余使用寿命预测方法存在预测准确度不足、训练效率不高等问题,提出一种时频分析结合改进Transformer的轴承剩余使用寿命预测方法。首先用短时傅里叶变换提取轴承的时频特征,为了改善Transformer的特征提取能力,研究了基于膨胀因果卷积的可变长度数据分析结构,并设计了自适应位置编码模块替代Transformer的传统编码方式,改进的模型增强了对时频数据的分析能力,实现了高效、准确的端到端的滚动轴承剩余寿命预测。在PHM2012轴承数据集上的实验结果表明提出的方法的效率比LSTM高20%,同时预测精度相比于多种现有传统方法均具有16%以上的提升。 展开更多
关键词 剩余寿命预测 transformer 膨胀因果卷积 自适应位置编码
下载PDF
基于Transformer的多方面特征编码图像描述生成算法 被引量:4
12
作者 衡红军 范昱辰 王家亮 《计算机工程》 CAS CSCD 北大核心 2023年第2期199-205,共7页
由目标检测算法提取的目标特征在图像描述生成任务中发挥重要作用,但仅使用对图像进行目标检测的特征作为图像描述任务的输入会导致除关键目标信息以外的其余信息获取缺失,且生成的文本描述对图像内目标之间的关系缺乏准确表达。针对上... 由目标检测算法提取的目标特征在图像描述生成任务中发挥重要作用,但仅使用对图像进行目标检测的特征作为图像描述任务的输入会导致除关键目标信息以外的其余信息获取缺失,且生成的文本描述对图像内目标之间的关系缺乏准确表达。针对上述不足,提出用于编码图像内目标特征的目标Transformer编码器,以及用于编码图像内关系特征的转换窗口Transformer编码器,从不同角度对图像内不同方面的信息进行联合编码。通过拼接方法将目标Transformer编码的目标特征与转换窗口Transformer编码的关系特征相融合,达到图像内部关系特征和局部目标特征融合的目的,最终使用Transformer解码器将融合后的编码特征解码生成对应的图像描述。在MS-COCO数据集上进行实验,结果表明,所构建模型性能明显优于基线模型,BLEU-4、METEOR、ROUGE-L、CIDEr指标分别达到38.6%、28.7%、58.2%和127.4%,优于传统图像描述网络模型,能够生成更详细准确的图像描述。 展开更多
关键词 图像描述 转换窗口 多头注意力机制 多模态任务 transformer编码
下载PDF
基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测 被引量:14
13
作者 骆钊 吴谕侯 +3 位作者 朱家祥 赵伟杰 王钢 沈鑫 《电网技术》 EI CSCD 北大核心 2023年第9期3527-3536,共10页
风电超短期功率预测过程中对时间依赖性的有效捕捉与建模,将直接影响风电功率时间序列预测模型的稳定性和泛化性。为此,提出一种新型时序Transformer风电功率预测模型。模型架构在逻辑上分为时间块自编码、隐空间Transformer自注意力时... 风电超短期功率预测过程中对时间依赖性的有效捕捉与建模,将直接影响风电功率时间序列预测模型的稳定性和泛化性。为此,提出一种新型时序Transformer风电功率预测模型。模型架构在逻辑上分为时间块自编码、隐空间Transformer自注意力时序自回归、随机方差缩减梯度(stochastic variance reduce gradient,SVRG)优化3个部分。首先,依稀疏约束及低秩近似规则,风电功率时空数据被半监督映射至隐空间;其次,隐空间编码经由多头自注意力网络完成时序自回归预测;最后,模型采用方差缩减SVRG优化算法降低噪声,达到更高预测效能。实验结果表明,所提新型Transformer架构能稳定有效进行超短期风电功率预测,预测结果在准确性、泛化性方面相较于传统机器学习模型都有明显提升。 展开更多
关键词 风电功率预测 时间依赖性 时间序列块自编码 时间序列transformer 自注意力网络
下载PDF
基于Transformer生成对抗网络的跨模态哈希检索算法
14
作者 雷蕾 徐黎明 《南阳理工学院学报》 2024年第4期38-44,共7页
考虑生成对抗网络在保持跨模态数据之间的流形结构的优势,并结合Transformer利用自注意力和无须使用卷积的优点,提出一种基于Transformer生成对抗网络的跨模态哈希检索算法。首先在ImageNet数据集上预训练Vision Transformer框架,并将... 考虑生成对抗网络在保持跨模态数据之间的流形结构的优势,并结合Transformer利用自注意力和无须使用卷积的优点,提出一种基于Transformer生成对抗网络的跨模态哈希检索算法。首先在ImageNet数据集上预训练Vision Transformer框架,并将其作为图像特征提取的主干网络,然后将不同模态的数据分割为共享特征和私有特征。接着,构建对抗学习模块减少不同模态的共享特征的分布距离与保持语义一致性,同时增大不同模态的私有特征分布距离与保持语义非一致性。最后将通用的特征表示映射为紧凑的哈希码,实现跨模态哈希检索。实验结果表明,在公共数据集上,所提算法优于对比算法。 展开更多
关键词 transformer 生成对抗网络 跨模态检索 哈希编码 语义保持
下载PDF
基于多层编码的数据库指纹溯源方法
15
作者 李莉 《自动化技术与应用》 2024年第7期134-136,188,共4页
为了实现针对数据库数据的泄密追踪,提出一套基于多层编码的数据库指纹溯源方法。在通过OFFO多层编码预防用户合谋的基础上在数据库中嵌入数据指纹,详细介绍指纹嵌入的基本原理与实现流程,通过提取码元的方式实现数据库指纹的溯源。最... 为了实现针对数据库数据的泄密追踪,提出一套基于多层编码的数据库指纹溯源方法。在通过OFFO多层编码预防用户合谋的基础上在数据库中嵌入数据指纹,详细介绍指纹嵌入的基本原理与实现流程,通过提取码元的方式实现数据库指纹的溯源。最后通过数据库指纹匹配率对比实验的方式对溯源算法的有效性加以验证,实验结果表明,研究所提出的数据库指纹溯源方案在溯源准确率方面应用效果较为理想。 展开更多
关键词 数据库指纹 编码 溯源算法 数据安全
下载PDF
基于CNN‐Head Transformer编码器的中文命名实体识别 被引量:6
16
作者 史占堂 马玉鹏 +1 位作者 赵凡 马博 《计算机工程》 CAS CSCD 北大核心 2022年第10期73-80,共8页
基于多头自注意力机制的Transformer作为主流特征提取器在多种自然语言处理任务中取得了优异表现,但应用于命名实体识别任务时存在一字多词、增加额外存储与词典匹配时间等问题。提出一种CNN-Head Transformer编码器(CHTE)模型,在未使... 基于多头自注意力机制的Transformer作为主流特征提取器在多种自然语言处理任务中取得了优异表现,但应用于命名实体识别任务时存在一字多词、增加额外存储与词典匹配时间等问题。提出一种CNN-Head Transformer编码器(CHTE)模型,在未使用外部词典和分词工具的基础上,通过自注意力机制捕获全局语义信息,利用不同窗口大小的CNN获取Transformer中6个注意力头的Value向量,使CHTE模型在保留全局语义信息的同时增强局部特征和潜在词信息表示,并且应用自适应的门控残差连接融合当前层和子层特征,提升了Transformer在命名实体识别领域的性能表现。在Weibo和Resume数据集上的实验结果表明,CHTE模型的F1值相比于融合词典信息的Lattice LSTM和FLAT模型分别提升了3.77、2.24和1.30、0.31个百分点,具有更高的中文命名实体识别准确性。 展开更多
关键词 命名实体识别 自注意力机制 transformer编码 卷积神经网络 残差连接
下载PDF
基于动态Transformer的轻量化目标检测算法
17
作者 方思凯 孙广玲 +1 位作者 陆小锋 刘学锋 《电光与控制》 CSCD 北大核心 2024年第2期52-57,共6页
针对Transformer检测模型计算复杂度高以及检测效率低的问题,提出一种轻量化的动态Transformer目标检测改进算法。首先,在自注意力模块中引入动态门来筛选重要的关注区域,设计了从局部到全局的动态稀疏自注意力机制,在减轻计算负载的同... 针对Transformer检测模型计算复杂度高以及检测效率低的问题,提出一种轻量化的动态Transformer目标检测改进算法。首先,在自注意力模块中引入动态门来筛选重要的关注区域,设计了从局部到全局的动态稀疏自注意力机制,在减轻计算负载的同时增强模型的多尺度泛化能力;其次,在模型结构层面上引入了动态跳层机制,使模型在推理过程中能够根据输入自适应调整参数和结构,在检测速率与精度之间取得更好的权衡。实验结果表明,改进后检测模型的计算冗余有效降低,相比现有的基准模型更加高效,实际应用空间更加广阔。 展开更多
关键词 目标检测 transformer 轻量化 动态门 多尺度 动态跳
下载PDF
基于Transformer编码器的中文命名实体识别模型 被引量:10
18
作者 司逸晨 管有庆 《计算机工程》 CAS CSCD 北大核心 2022年第7期66-72,共7页
命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式... 命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式难以获取词语信息。提出一种基于Transformer编码器的中文命名实体识别模型,在字嵌入过程中使用结合词典的字向量编码方法使字向量包含词语信息,同时针对Transformer编码器在注意力运算时丢失字符相对位置信息的问题,改进Transformer编码器的注意力运算并引入相对位置编码方法,最终通过条件随机场模型获取最优标签序列。实验结果表明,该模型在Resume和Weibo中文命名实体识别数据集上的F1值分别达到94.7%和58.2%,相比于基于双向长短期记忆网络和ID-CNN的命名实体识别模型均有所提升,具有更优的识别效果和更快的收敛速度。 展开更多
关键词 自然语言处理 中文命名实体识别 transformer编码 条件随机场 相对位置编码
下载PDF
基于Transformer_LSTM编解码器模型的船舶轨迹异常检测方法 被引量:2
19
作者 李可欣 郭健 +3 位作者 李冉冲 王宇君 李宗明 缪坤 《中国舰船研究》 CSCD 北大核心 2024年第2期223-232,共10页
[目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于... [目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于编码器解码器架构,由Transformer_LSTM模块替代传统神经网络实现轨迹特征提取和轨迹重构;将Transformer嵌入LSTM的递归机制,结合循环单元和注意力机制,利用自注意力和交叉注意力实现对循环单元状态向量的计算,实现对长序列模型的有效构建;通过最小化重构输出和原始输入之间的差异,使模型学习一般轨迹的特征和运动模式,将重构误差大于异常阈值的轨迹判定为异常轨迹。[结果]采用2021年1月的船舶AIS数据进行实验,结果表明,模型在准确率、精确率以及召回率上相较于LOF,DBSCAN,VAE,LSTM等经典模型有着明显提升;F1分数相较于VAE_LSTM模型提升约8.11%。[结论]该方法的异常检测性能在各项指标上显著优于传统算法,可有效、可靠地运用于海上船舶轨迹异常检测。 展开更多
关键词 异常检测 深度学习 编码器解码器 transformer 长短期记忆 轨迹重建
下载PDF
基于Transformer编码器的语义相似度算法研究 被引量:6
20
作者 乔伟涛 黄海燕 王珊 《计算机工程与应用》 CSCD 北大核心 2021年第14期158-163,共6页
语义相似度计算旨在计算文本之间在语义层面的相似程度,是自然语言处理中一项重要的任务。针对现有的计算方法不能充分表示句子的语义特征的问题,提出基于Transformer编码器的语义特征抽取的模型TEAM,利用Transformer模型的上下文语义... 语义相似度计算旨在计算文本之间在语义层面的相似程度,是自然语言处理中一项重要的任务。针对现有的计算方法不能充分表示句子的语义特征的问题,提出基于Transformer编码器的语义特征抽取的模型TEAM,利用Transformer模型的上下文语义编码能力充分提取句子内的语义信息,对句子进行深层语义编码。此外,通过引入交互注意力机制,在编码两个句子时利用交互注意力机制提取两个句子之间关联的相似特征,使模型更擅长捕捉句子内部重要的语义信息,提高了模型对语义的理解和泛化能力。实验结果表明,该模型在英文和中文的语义相似度计算任务上能够提高结果的准确性,较已有方法表现出更好的效果。 展开更多
关键词 语义相似度 transformer编码 交互注意力机制 语义表示
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部