Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to...Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.展开更多
BACKGROUND Acute myeloid leukemia(AML)is a disease in which immature hematopoietic cells accumulate in the bone marrow and continuously expand,inhibiting hematopoiesis.The treatment and prognosis of this disease have ...BACKGROUND Acute myeloid leukemia(AML)is a disease in which immature hematopoietic cells accumulate in the bone marrow and continuously expand,inhibiting hematopoiesis.The treatment and prognosis of this disease have always been unsatisfactory.AIM To investigate the correlation between vascular endothelial growth factor(VEGF)and transforming growth factor-β1(TGFβ1)expression and prognosis in older adults with AML.METHODS This study enrolled 80 patients with AML(AML group),including 36 with complete response(AML-CR),23 with partial response(AML-PR),and 21 with no response(AML-NR).The expression levels of VEGF and TGFβ1 were detected by reverse transcription polymerase chain reaction in bone marrow mononuclear cells isolated from 56 healthy controls.Kaplan-Meier analysis was performed to assess overall survival(OS)and progression-or disease-free survival(DFS).Prognostic risk factors were analyzed using a Cox proportional hazards model.RESULTS The AML group showed a VEGF level of 2.68±0.16.VEGF expression was lower in patients with AML-CR than those with AML-PR or AML-NR(P<0.05).TGFβ1 expression in the AML group was 0.33±0.05.Patients with AML-CR showed a higher TGFβ1 expression than those with AML-PR or AML-NR(P<0.05).VEGF and TGFβ1 expression in patients with AML was significantly correlated with the counts of leukocytes,platelets,hemoglobin,and peripheral blood immature cells(P<0.05);Kaplan-Meier survival analysis revealed that patients with high TGFβ1 expression had better OS and DFS than those with low TGFβ1 expression(P<0.05),whereas patients with low VEGF levels showed better OS and DFS than those with high VEGF levels(P<0.05).VEGF,TGFβ1,and platelet count were identified by the Cox proportional hazards model as independent risk factors for OS(P<0.05),while VEGF,TGFβ1,and white blood cell count were independent risk factors for DFS(P<0.05).CONCLUSION Decreased VEGF expression and increased TGFβ1 expression in patients with AML provide valuable references for determining and individualizing clinical treatment strategies.展开更多
In this editorial we expand the discussion on the article by Zhang et al published in the recent issue of the World Journal of Hepatology.We focus on the diagnostic and therapeutic targets identified on the basis of t...In this editorial we expand the discussion on the article by Zhang et al published in the recent issue of the World Journal of Hepatology.We focus on the diagnostic and therapeutic targets identified on the basis of the current understanding of the molecular mechanisms of liver disease.Transforming growth factor-β(TGF-β)belongs to a structurally related cytokine super family.The family members display different time-and tissue-specific expression patterns associated with autoimmunity,inflammation,fibrosis,and tumorigenesis;and,they participate in the pathogenesis of many diseases.TGF-βand its related signaling pathways have been shown to participate in the progression of liver diseases,such as injury,inflammation,fibrosis,cirrhosis,and cancer.The often studied TGF-β/Smad signaling pathway has been shown to promote or inhibit liver fibrosis under different circumstances.Similarly,the early immature TGF-βmolecule functions as a tumor suppressor,inducing apoptosis;but,its interaction with the mitogenic molecule epidermal growth factor alters this effect,activating anti-apoptotic signals that promote liver cancer development.Overall,TGF-βsignaling displays contradictory effects in different liver disease stages.Therefore,the use of TGF-βand related signaling pathway molecules for diagnosis and treatment of liver diseases remains a challenge and needs further study.In this editorial,we aim to review the evidence for the use of TGF-βsignaling pathway molecules as diagnostic or therapeutic targets for different liver disease stages.展开更多
Aim To determine the effect of local simvastatin application on the mRNA expression level of transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (...Aim To determine the effect of local simvastatin application on the mRNA expression level of transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) in the tooth sockets of rat. Methodology Forty-eight male Wistar rats were randomly divided into experimental and control groups (n=24). Polylactic acid/polyglycolic acid copolymer carriers, with or without simvastatin, were implanted into extraction sockets of right mandibular incisors. The expression of TGF-β1, BMP-2 and VEGF mRNA was determined by in situ hybridization in the tooth extraction socket at five days, one week, two weeks and four weeks after implantation. Results The fusiform stroma cells in the tooth extraction socket began to express TGF-β1, BMP-2 and VEGF mRNA in both experimental and control groups from one week after tooth extraction until the end of experiment. The expression of TGF-131 and BMP-2 mRNA in the experimental group was significantly up-regulated after one, two and four weeks, and expression of VEGF mRNA was significantly increased after one and two weeks compared with that in the control group. Conclusion The findings indicate that local administration of simvastatin can influence alveolar bone remodeling by regulating the expression of a school of growth factors which are crucial to osteogenesis in the tooth extraction socket.展开更多
AIM: To investigate the mechanism of celastrol in inhibiting lens epithelial cells(LECs) fibrosis, which is the pathological basis of cataract.METHODS: Human LEC line SRA01/04 was treated with celastrol and transformi...AIM: To investigate the mechanism of celastrol in inhibiting lens epithelial cells(LECs) fibrosis, which is the pathological basis of cataract.METHODS: Human LEC line SRA01/04 was treated with celastrol and transforming growth factor-β2(TGF-β2). Wound-healing assay, proliferation assay, flow cytometry, real-time polymerase chain reaction(PCR), Western blot and immunocytochemical staining were used to detect the pathological changes of celastrol on LECs. Then, we cultured Sprague-Dawley rat lens in medium as a semi-in vivo model to find the function of celastrol further.RESULTS: We found that celastrol inhibited the migration of LECs, as well as proliferation(P<0.05). In addition, it induced the G2/M phase arrest by cell cyclerelated proteins(P<0.01). Moreover, celastrol inhibited epithelial-mesenchymal transition(EMT) by the blockade of TGF-β/Smad and Jagged/Notch signaling pathways.CONCLUSION: Our study demonstrates that celastrol could inhibit TGF-β2-induced lens fibrosis and raises the possibility that celastrol could be a potential novel drug in prevention and treatment of fibrotic cataract.展开更多
The expression of the anti-apoptotic molecules Bcl-2 and transforming growth factor-beta 1 is known to confer protective effects on the cerebral ischemia-reperfusion injury.The current study investigated the expressio...The expression of the anti-apoptotic molecules Bcl-2 and transforming growth factor-beta 1 is known to confer protective effects on the cerebral ischemia-reperfusion injury.The current study investigated the expression levels of Bcl-2 and transforming growth factor-beta 1 in response to multiple pre-ischemia electro-acupuncture at acupoints Zusanli(ST36)and Fengchi(GB20) stimulation.Rats were divided into five groups:uninjured,control,non-acupoint,GB20 and ST36. Rats in the non-acupoint,GB20 and ST36 groups received 30 minutes(3 times or 18 times)of electro-acupuncture stimulation before experimental cerebral ischemia was induced.Bcl-2 and transforming growth factor-beta 1 were found to be significantly increased in the ST36 groups with either 3 or 18 electro-acupuncture treatments(P〈0.05).The production was higher with 18 electro-acupuncture treatments in the ST36 groups(P〈0.05).In the GB20 groups,significant increase was only observed in transforming growth factor-beta 1 with 18 electro-acupuncture treatments(P〈0.05).No significant elevation of the level of transforming growth factor-beta 1 was observed in the non-acupoint groups.However,the production of Bcl-2 increased with 18 treatments in the non-acupoint groups(P〈0.05).The data suggest that multiple pre-ischemia electro-acupuncture at ST36 was effective in conferring neuroprotective effect on the brain by means of upregulation of Bcl-2 and transforming growth factor-beta 1 and the effect was increase with the number of treatment.展开更多
Transforming growth factor-beta (TGF-β) type II receptor (TβRⅡ) levels are extremely low in the brain tissue of patients with Alzheimer's disease. This receptor inhibits TGF-β1/SMAD signaling and thereby aggr...Transforming growth factor-beta (TGF-β) type II receptor (TβRⅡ) levels are extremely low in the brain tissue of patients with Alzheimer's disease. This receptor inhibits TGF-β1/SMAD signaling and thereby aggravates amyolid-beta deposition and neuronal injury. Dab2, a specific adapter protein, protects T RII from degradation and ensures the effective conduction of TGF-β 1/SMAD signaling. In this study, we used an adenoviral vector to overexpress the Dab2 gene in the mouse hippocampus and investigated the regulatory effect of Dab2 protein on TGF-β1/SMAD signaling in a mouse model of Alzheimer's disease, and the potential neuroprotective effect. The results showed that the TβRⅡ level was lower.in APP/PS1 mouse hippocampus than in normal mouse hippocampus. After Dab2 expression, hippocampal TβRⅡ and p-SMAD2/3 levels were signifi- cantly increased, while amyloid-beta deposition, microglia activation, tumor necrosis factor- and interleulin-6 levels and neuronal loss were significantly attenuated in APP/PS1 mouse brain tissue. These results suggest that Dab2 can exhibit neuroprotective effects in Alzheimer's disease by regulating TGF-β1/SMAD signaling.展开更多
AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-...AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P 【0.01) and the length of F-actin,reduced the mean optical density(P 【0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.展开更多
AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS...AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS: Retinal pigment epithelial(ARPE-19) cells were cultured with no serum for 12 h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7 c mimcs(miR-let7 cM), miR-let7 c mimcs negative control(miR-let7cMNC) and miR-let7 c inhibitor(miR-let7 cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS: The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B(NF-κB) signaling pathway was activated after induction by TGF-β2(P<0.05). In turn, overexpressed miR-let7 c significantly inhibited TGF-β2-induced EMT(P<0.05). However, miR-let7 c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082(P<0.01). CONCLUSION: The miR-let7 c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.展开更多
BACKGROUND The incidence of inflammatory bowel disease,a chronic intestinal inflammatory disorder that includes Crohn’s disease(CD)and ulcerative colitis,is rising.Circular RNAs are considered valuable diagnostic bio...BACKGROUND The incidence of inflammatory bowel disease,a chronic intestinal inflammatory disorder that includes Crohn’s disease(CD)and ulcerative colitis,is rising.Circular RNAs are considered valuable diagnostic biomarkers for CD.Current evidence supports the views that epithelial-mesenchymal transition(EMT)plays an important role in CD pathogenesis,and that hsa-miR-130a-3p can inhibit transforming growth factor-β1(TGF-β1)-induced EMT.Our previous study revealed that hsa_circRNA_102610 was upregulated in CD patients.Moreover,we predicted an interaction between hsa_circRNA_102610 and hsa-miR-130a-3p.Thus,we hypothesized that hsa_circRNA_102610 may play roles in the proliferation and EMT of intestinal epithelial cells by sponging hsa-miR-130a-3p to participate in the pathogenesis of CD.AIM To explore the mechanism of hsa_circRNA_102610 in the pathogenesis of CD.METHODS The relative expression levels of hsa_circRNA_102610 and hsa-miR-130a-3p in patients were detected by quantitative reverse transcription-polymerase chain reaction.The proliferation of human intestinal epithelial cells(HIECs)and normal-derived colon mucosa cell line 460(NCM460)cells was detected by cell counting kit-8,5-ethynyl-2’-deoxyuridine staining and cell cycle assays following overexpression or downregulation of hsa_circRNA_102610.Cell proliferation assays were performed as described above in a rescue experiment with hsa-miR-130a-3p mimics.The interaction of hsa_circRNA_102610 and hsa-miR-130a-3p was verified by fluorescence in situ hybridization and dual luciferase reporter assays.The relative expression levels of CyclinD1,mothers against decapentaplegic homolog 4(SMAD4),E-cadherin,N-cadherin and Vimentin were detected by western blotting following hsa_circRNA_102610 overexpression,TGF-β1-induced EMT or hsa-miR-130a-3p mimic transfection(in rescue experiments).RESULTS Upregulation of hsa_circRNA_102610 was determined to be positively correlated with elevated fecal calprotectin levels in CD(r=0.359,P=0.007)by Pearson correlation analysis.Hsa_circRNA_102610 promoted the proliferation of HIECs and NCM460 cells,while hsa-miR-130a-3p reversed the cell proliferationpromoting effects of hsa_circRNA_102610.Fluorescence in situ hybridization and dual luciferase reporter assays showed that hsa_circRNA_102610 directly bound hsa-miR-130a-3p in NCM460 and 293T cells.An inverse correlation between downregulation of hsa-miR-130a-3p and upregulation of hsa_circRNA_102610 in CD patients was observed(r=-0.290,P=0.024)by Pearson correlation analysis.Moreover,overexpression of hsa_circRNA_102610 promoted SMAD4 and CyclinD1 protein expression validated by western-blotting.Furthermore,overexpression of hsa_circRNA_102610 promoted TGF-β1 induced EMT in HIECs and NCM460 cells via targeting of hsa-miR-130a-3p,with increased expression of Vimentin and N-cadherin and decreased expression of E-cadherin.CONCLUSION Hsa_circRNA_102610 upregulation in CD patients could promote the proliferation and EMT of intestinal epithelial cells via sponging of hsa-miR-130a-3p.展开更多
AIM:To study the inhibition of nuclear factor kappa-B p65(NF-κB p65)antisense oligodeoxynucleotide(ASODN)on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2(T...AIM:To study the inhibition of nuclear factor kappa-B p65(NF-κB p65)antisense oligodeoxynucleotide(ASODN)on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2(TGF-β2).·M ETHODS:NF-κBp65ASODNand NF-κBp65missense oligodeoxynucleotide(MSODN)were designed and synthesized.Human lens epithelial cell line(HLE B-3)cells were prepared for study and divided into 7 groups.Control group was HLE B-3 cells cultured in dulbecco’s modified eagle medium(DMEM).T1,T2,and T3 group were HLE B-3 cells cultured in DMEM with 10 ng/m L TGF-β2 for 6h,12h,24h respectively.A+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2for 24h after transfected by NF-κB p65 ASODN for 24h.M+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after transfected by NF-κB p65 MSODN for 24h.The negative control group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after cultured with transfer agent(Hi Per Fect)for 24h.Cell morphology was observed at different time points using an inverted microscope.The expression of NF-κB p65 m RNA was detected with reverse transcription-polymerase chain reaction(RT-PCR),and the expression ofα-smooth muscle actin(α-SMA)protein was assayed with ELISA.·RESULTS:With the TGF-β2 stimulation prolongation,the expression of NF-κB p65 m RNA and a-SMA protein increased in T1,T2,T3 groups compared with the control group,and the difference was statistically significant(〈0.05).NF-κB p65 ASODN lowered the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.NF-κB p65 MSODN and Hi Per Fect did not lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.The difference between control group and A+T group was not statistically significant(〉0.05),but the difference among A+T group and other groups was statistically significant(〈0.05).·CONCLUSION:NF-κB p65 ASODN could lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2,and antagonized TGF-β2-induced transdifferentiation of HLE B-3.NF-κB p65ASODN could be used as a new biological therapeutic target of posterior capsular opacification.展开更多
BACKGROUND The epiphyseal growth plate is an important anatomical segment localized on the ends of a long bone.Despite the abovementioned atractive reasons for alendronate’s use,few data on the effect of alendronate ...BACKGROUND The epiphyseal growth plate is an important anatomical segment localized on the ends of a long bone.Despite the abovementioned atractive reasons for alendronate’s use,few data on the effect of alendronate during epiphyseal growth exist.AIM Verify the effect of alendronate on the growth epiphyseal plate,and compare its effect with the size of the femur during the double-staining of the immunolocalization of transforming growth factor-β1(TGF-β1)and bone morphogenetic protein-2(BMP2)in endochondral ossifing in specimens that have received alendronate.METHODS Forty newborn rats were randomly divided into two groups:a control group(were given applications of 1 mg/kg physiologic saline)and a group that received Alendronate(a dose of 2.5 mg/kg).These groups were then divided into two subgroups for euthanasia in two and 12 d of life.After euthanasia,the femurs were removed,and the femoral bones were measured linearly between the apex of the greater trochanter until the lower intercondylar midlle face to verify the probable bone growth between 3 and 12 d in control and alednroanto treated rats.Posteriorly,the surgical pieces were also sent to the histopathology laboratory to produce histological slides.The obtained slides were stained with hematoxylin and eosin to measure each of the cartilage zones in endochondral development.and other slides were immunohistochemically tested for anti-TGF-β1 and BMP-2 antibodies to investigate the immunolocalization of these proteins in the epiphyseal plaque area.RESULTS On the third day,some diferences between the control group and specimens treated with alendronate were verified.Macroscopiccaly,we found similarities in size between the femoral bones when we compared the control group with the specimens that received alendronate.On the 12^th day,the bone size of the mice receiving the drug was significantly smaller than those of the control group.These results coincide with changes in the TGF-β1 and BMP-2 expression.In the specimens that received alendronate,the TGF-β1 was expressed in some sites of trabecular bone that was neoformed,peripherally to the bone marrow area.The BMP-2 was also positive in proliferative chondrocytes and hypertrofic chondrocytes.On the 12^th day,all layers of chondrocytes exhibited positivity for BMP-2 in the specimens that received alendronate.In the interface between the trabecular bone and cartilage,an area of disorganized bone deposition was evident.Neoformed bone also appeared to be different at 12 d.In the control group,BMP-2 was positive in an intense area of bone trabeculae,whereas the alendronate-treated group showed TGF-β1 positive trabeculae and a greater bone area.CONCLUSION Alendronate alters the immunolocalization of TGF-β1 and BMP-2 simultaneously,a condition that changes the usual histological aspects of the cartilage zone and impairs epiphysis growth and femur growth.展开更多
Background: Cyclooxygenase-2 (COX-2) and transforming growth factor-beta1 (TGF-β1) are modulated in variety cancers including Hepatocellular carcinoma (HCC). However, there is a paucity of data concerning their role ...Background: Cyclooxygenase-2 (COX-2) and transforming growth factor-beta1 (TGF-β1) are modulated in variety cancers including Hepatocellular carcinoma (HCC). However, there is a paucity of data concerning their role in the pathologic process of recurrence of HCC following hepatectomy. We herein assessed the role of the hepatic expression of COX-2 and TGF-β as predictors for patients with early recurrence within 2 years of HCC diagnosis. Methods: Sixty patients with HCC who underwent curative hepatectomy between 2000 and 2003 were entered in the present study. The immunoreactivity and distribution patterns of COX-2 and TGF-β1 were examined in both the HCC and the adjacent nonHCC tissues of the liver. Risk factors of tumor recurrence within 2 years, including COX-2 and TGF-β1 expression, were investigated by univariate and multivariate analyses. Results: Among 60 patients, 31 patients had early recurrences within 2 years and 14 patients recurred after 2 years following surgery. Patients with low COX-2 expression in the HCC tissues and adjacent nonHCC tissues had favorable disease-free survival (p = 0.002 and p β1 expression in the nonHCC tissues had also longer disease-free survival (p = 0.045). Based on the expression patterns of COX-2 and TGF-β1, patients with low COX-2 and positive TGF-β1 expression in the nonHCC tissues had favorable overall and disease-free survival (p β1 signaling in nontumor tissues suggested high risk of recurrence and poor survival to the HCC patients following hepatectomy.展开更多
Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce t...Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of type I collagen gene expression and in the development of fibrosis, demonstrated both/n vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes.展开更多
BACKGROUND:Organ fibrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiate...BACKGROUND:Organ fibrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiated by a variety of pathological, physiological, biochemical, and physical factors. Regardless of their different etiologies, they all share a common pathogenetic process: excessive activation of the key profibrotic cytokine, transforming growth factor-β (TGF-β). Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor of the nuclear receptor superfamily, has received particular attention in recent years, because the activation of PPARγ by both natural and synthetic agonists could effectively inhibit TGF-β-induced profibrotic effects in many organs. DATA SOURCES: The English-language medical databases, PubMed, Elsevier and SpringerLink were searched for articles on PPARγ, TGF-β, and fibrosis, and related topics. RESULTS: TGF-β is recognized as a key profibrotic cytokine. Excessive activation of TGF-β increases synthesis of extracellular matrix proteins and decreases their degradation, associated with a gradual destruction of normal tissue architecture and function, whereas PPARγ agonists inhibit TGF-β signal transduction and are effective antifibrogenic agents in many organs including the liver, lung, kidney, skin and heart. CONCLUSIONS: The main antifibrotic activity of PPARγ agonists is to suppress the TGF-β signaling pathway by so-called PPARγ-dependent effect. In addition, PPARγ agonists, especially 15d-PGJ2, also exert potentially antifibrotic activity independent of PPARγ activation. TGF-β1/Smads signaling not only plays many essential roles in multiple developmental processes, butalso forms cross-talk networks with other signal pathways, and their inhibition by PPARγ agonists certainly affects the cytokine networks and causes non-suspected side-effects. Anti-TGF-β therapies with PPARγ agonists may have to be carefully tailored to be tissue-and target gene-specific to minimize side-effects, indicating a great challenge to the medical research at present.展开更多
Objective To investigate the role of transforming growth factor-131 (TGF-β1)/Smad4 pathway in development of renal fibrosis in streptozotocin (STZ)-induced diabetic nephropathy (DN) rats and explore its possibl...Objective To investigate the role of transforming growth factor-131 (TGF-β1)/Smad4 pathway in development of renal fibrosis in streptozotocin (STZ)-induced diabetic nephropathy (DN) rats and explore its possible mechanism. Methods Male Wistar rats weighing 180-220 g were divided into 5 groups: group A ( normal control), group B [ diabetes mellitus (DM) 2 weeks ], group C ( DM 4 weeks), group D ( DM 8 weeks), and group E ( DM 16 weeks). Except for the normal control group, other groups were induced DM by single injection of STZ (55 mg/kg) respectively. Blood glucose level, serum creatinine, and 24-hour urine protein were examined. Expressions of TGF-β1 and Smad4 protein and mRNA in kidney were detected using immunohistochemical technique, Western blot, and real-time PCR. mRNA expressions of stromelysin-1 ( MMP-3 ), tissue inhibitor of metalloproteinase-1 ( TIMP-1 ), and collagen Ⅲ in kidney were also detected by real-time PCR. Results The levels of blood glucose, serum creatinine, and 24-hour urine protein in rats of group B, C, D, and E were higher than those of the control group. With the progression of renal fibrosis, the expressions of TGF-β1 and Smad4 protein and mRNA in kidney of diabetic rats elevated. In addition, the renal MMP-3 mRNA expression diminished in diabetic rats, while TIMP-1 and collagen Ⅲ mRNA increased. Conclusions In STZ-induced diabetic rats, the TGF-β1/Smad4 appears to play an important role in renal fibrosis of DN. The increased expression of TGF-β1 and Smad4 might result in the transcriptional regulation of downstream target genes of TGF-β1/Smad4 pathway, which contributes to the progression of renal fibrosis in diabetic rats.展开更多
To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a ex...To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting.RESULTSExpression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells.CONCLUSIONmiR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway.展开更多
Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor ...Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor progression and metastasis of advanced prostate cancer. In the present study, TGF-β1 was shown to induce VEGFA165 secretion from both normal cell lines (HPV7 and RWPE1) and prostate cancer cell lines (DU 145 and PC3). Conversely, hypoxia-stimulated VEGFA165 secretion was observed only in prostate cancer cell lines. Hypoxia induced TGF-β1 expression in PC3 prostate cancer cells, and the TGF-β1 type I receptor (ALK5) kinase inhibitor partially blocked hypoxia-mediated VEGFA16s secretion. This effect of hypoxia provides a novel mechanism to increase VEGFA expression in prostate cancer cells. Although autocrine signaling of VEGFA has been implicated in prostate cancer progression and metastasis, the associated mechanism is poorly characterized. VEGFA activity is mediated via VEGF receptor (VEGFR) 1 (Fit-l) and 2 (FIk-I/KDR). Whereas VEGFR-1 mRNA was detected in normal prostate epithelial cells, VEGFR-2 mRNA and VEGFR protein were expressed only in PC3 cells. VEGFA165 treatment induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERKI/2) in PC3 cells but not in HPV7 cells, suggesting that the autocrine function of VEGFA may be uniquely associated with prostate cancer. Activation of VEGFR-2 by VEGFA165 was shown to enhance migration of PC3 cells. A similar effect was also observed with endogenous VEGFA induced by TGF-β1 and hypoxia. These findings illustrate that an autocrine loop of VEGFA via VEGFR-2 is critical for the tumorigenic effects of TGF-β1 and hypoxia on metastatic prostate cancers.展开更多
AIM: To investigate the effect of various concentrations of tetrandrine on activation of quiescent rat hepatic stellate cells (HSCs) and transforming growth factor-β (TGF-β) signaling in vitro.METHODS: HSCs were iso...AIM: To investigate the effect of various concentrations of tetrandrine on activation of quiescent rat hepatic stellate cells (HSCs) and transforming growth factor-β (TGF-β) signaling in vitro.METHODS: HSCs were isolated from rats by in situperfusion of liver and 18% Nycodenz gradient centrifugation, and primarily cultured on uncoated plastic plates for 24 hwith DMEM containing 20% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, the HSCs were cultured in 2% FBS/DMEM with tetrandrine (0.25, 0.5, 1,2 mg/L, respectively). Cell morphological features were observed under an inverted microscope, smooth muscleα-actin (α-SMA) was detected by immunocytochemistry and image analysis system, laminin (LN) and type Ⅲprocollagen (PCⅢ) in supernatants were determined byradioimmunoassay. TGF-β1 mRNA, Smad 7 mRNA and Smad 7 protein were analyzed with RT-PCR and Western blotting, respectively.RESULTS: Tetrandrine at the concentrations of 0.25-2 mg/L prevented morphological transformation of HSC from the quiescent state to the activated one, while α-SMA, LN and PCⅢ expressions were inhibited. As estimated by gray values, the expression of α-SMA in tetrandrine groups (0.25, 0.5, 1, 2 mg/L) was reduced from 21.3% to 42.2%(control: 0.67, tetrandrine groups: 0.82, 0.85, 0.96, or 0.96, respectively, which were statistically different from the control, P<0.01), and the difference was more significant in tetrandrine at 1 and 2 mg/L. The content of LN in supernatants was significantly decreased in tetrandrine groups to 58.5%, 69.1%, 65.8% or 60.0% that of the control respectively, and that of PCⅢ to 84.6%, 81.5%,75.7% or 80.7% respectively (P<0.05 vs control), with no significant difference among tetrandrine groups. RTPCR showed that TGF-β1 mRNA expression was reduced by tetrandrine treatments from 56.56% to 87.90% in comparison with the control, while Smad 7 mRNA was increased 1.4-4.8 times. The TGF-β1 mRNA and Smad 7 mRNA expression was in a significant negative correlation (r= -0.755, P<0.01), and both were significantly correlated with α-SMA protein expression (r = -0.938, P<0.01;r = 0.938, P<0.01, respectively). The up-regulation of Smad 7 protein by tetrandrine (1 mg/L)was confirmed by Western blotting as well.CONCLUSION: Tetrandrine has a direct inhibiting effect on the activation of rat HSCs in culture. It up-regulates the expression of Smad 7 which in turn blocks TGF-β1 expression and signaling.展开更多
AIM To explore the role and mechanism of total flavone of Abelmoschus manihot(TFA) on epithelial-mesenchymal transition(EMT) progress of Crohn's disease(CD) intestinal fibrosis.METHODS First,CCK-8 assay was perfor...AIM To explore the role and mechanism of total flavone of Abelmoschus manihot(TFA) on epithelial-mesenchymal transition(EMT) progress of Crohn's disease(CD) intestinal fibrosis.METHODS First,CCK-8 assay was performed to assess TFA on the viability of intestinal epithelial(IEC-6) cells and select the optimal concentrations of TFA for our further studies.Then cell morphology,wound healing and transwell assays were performed to examine the effect of TFA on morphology,migration and invasion of IEC-6 cells treated with TGF-β1.In addition,immunofluorescence,real-time PCR analysis(q RT-PCR) and western blotting assays were carried out to detect the impact of TFA on EMT progress.Moreover,western blotting assay was performed to evaluate the function of TFA on the Smad and MAPK signaling pathways.Further,the role of co-treatment of TFA and si-Smad or MAPK inhibitors has been examined by q RTPCR,western blotting,morphology,wound healing andtranswell assays.RESULTS In this study,TFA promoted transforming growth factor-β1(TGF-β1)-induced(IEC-6) morphological change,migration and invasion,and increased the expression of epithelial markers and reduced the levels of mesenchymal markers,along with the inactivation of Smad and MAPK signaling pathways.Moreover,we revealed that si-Smad and MAPK inhibitors effectively attenuated TGF-β1-induced EMT in IEC-6 cells.Importantly,co-treatment of TFA and si-Smad or MAPK inhibitors had better inhibitory effects on TGF-β1-induced EMT in IEC-6 cells than either one of them.CONCLUSION These findings could provide new insight into the molecular mechanisms of TFA on TGF-β1-induced EMT in IEC-6 cells and TFA is expected to advance as a new therapy to treat CD intestinal fibrosis.展开更多
基金supported by the National Natural Science Foundation of China,Nos.31971277 and 31950410551(both to DY)。
文摘Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications.
基金the Ethic Committee of Suzhou Hospital of Anhui Medical University(Approval No.C2024003).
文摘BACKGROUND Acute myeloid leukemia(AML)is a disease in which immature hematopoietic cells accumulate in the bone marrow and continuously expand,inhibiting hematopoiesis.The treatment and prognosis of this disease have always been unsatisfactory.AIM To investigate the correlation between vascular endothelial growth factor(VEGF)and transforming growth factor-β1(TGFβ1)expression and prognosis in older adults with AML.METHODS This study enrolled 80 patients with AML(AML group),including 36 with complete response(AML-CR),23 with partial response(AML-PR),and 21 with no response(AML-NR).The expression levels of VEGF and TGFβ1 were detected by reverse transcription polymerase chain reaction in bone marrow mononuclear cells isolated from 56 healthy controls.Kaplan-Meier analysis was performed to assess overall survival(OS)and progression-or disease-free survival(DFS).Prognostic risk factors were analyzed using a Cox proportional hazards model.RESULTS The AML group showed a VEGF level of 2.68±0.16.VEGF expression was lower in patients with AML-CR than those with AML-PR or AML-NR(P<0.05).TGFβ1 expression in the AML group was 0.33±0.05.Patients with AML-CR showed a higher TGFβ1 expression than those with AML-PR or AML-NR(P<0.05).VEGF and TGFβ1 expression in patients with AML was significantly correlated with the counts of leukocytes,platelets,hemoglobin,and peripheral blood immature cells(P<0.05);Kaplan-Meier survival analysis revealed that patients with high TGFβ1 expression had better OS and DFS than those with low TGFβ1 expression(P<0.05),whereas patients with low VEGF levels showed better OS and DFS than those with high VEGF levels(P<0.05).VEGF,TGFβ1,and platelet count were identified by the Cox proportional hazards model as independent risk factors for OS(P<0.05),while VEGF,TGFβ1,and white blood cell count were independent risk factors for DFS(P<0.05).CONCLUSION Decreased VEGF expression and increased TGFβ1 expression in patients with AML provide valuable references for determining and individualizing clinical treatment strategies.
基金Supported by Shanxi Provincial Health Commission Youth Research Project,No.2021081Traditional Chinese Medicine Administration of Shanxi Province,No.2023ZYYDA2001。
文摘In this editorial we expand the discussion on the article by Zhang et al published in the recent issue of the World Journal of Hepatology.We focus on the diagnostic and therapeutic targets identified on the basis of the current understanding of the molecular mechanisms of liver disease.Transforming growth factor-β(TGF-β)belongs to a structurally related cytokine super family.The family members display different time-and tissue-specific expression patterns associated with autoimmunity,inflammation,fibrosis,and tumorigenesis;and,they participate in the pathogenesis of many diseases.TGF-βand its related signaling pathways have been shown to participate in the progression of liver diseases,such as injury,inflammation,fibrosis,cirrhosis,and cancer.The often studied TGF-β/Smad signaling pathway has been shown to promote or inhibit liver fibrosis under different circumstances.Similarly,the early immature TGF-βmolecule functions as a tumor suppressor,inducing apoptosis;but,its interaction with the mitogenic molecule epidermal growth factor alters this effect,activating anti-apoptotic signals that promote liver cancer development.Overall,TGF-βsignaling displays contradictory effects in different liver disease stages.Therefore,the use of TGF-βand related signaling pathway molecules for diagnosis and treatment of liver diseases remains a challenge and needs further study.In this editorial,we aim to review the evidence for the use of TGF-βsignaling pathway molecules as diagnostic or therapeutic targets for different liver disease stages.
基金supported by grants from the National Nature Science foundation of China(Grant Nos.30872912 and 30830108)
文摘Aim To determine the effect of local simvastatin application on the mRNA expression level of transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) in the tooth sockets of rat. Methodology Forty-eight male Wistar rats were randomly divided into experimental and control groups (n=24). Polylactic acid/polyglycolic acid copolymer carriers, with or without simvastatin, were implanted into extraction sockets of right mandibular incisors. The expression of TGF-β1, BMP-2 and VEGF mRNA was determined by in situ hybridization in the tooth extraction socket at five days, one week, two weeks and four weeks after implantation. Results The fusiform stroma cells in the tooth extraction socket began to express TGF-β1, BMP-2 and VEGF mRNA in both experimental and control groups from one week after tooth extraction until the end of experiment. The expression of TGF-131 and BMP-2 mRNA in the experimental group was significantly up-regulated after one, two and four weeks, and expression of VEGF mRNA was significantly increased after one and two weeks compared with that in the control group. Conclusion The findings indicate that local administration of simvastatin can influence alveolar bone remodeling by regulating the expression of a school of growth factors which are crucial to osteogenesis in the tooth extraction socket.
基金Supported by National Natural Science Foundation of China (No.81300749)Guangdong Province Natural Science Foundation (No.2018A030313628)+1 种基金973 program (No.2015CB964600)the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University
文摘AIM: To investigate the mechanism of celastrol in inhibiting lens epithelial cells(LECs) fibrosis, which is the pathological basis of cataract.METHODS: Human LEC line SRA01/04 was treated with celastrol and transforming growth factor-β2(TGF-β2). Wound-healing assay, proliferation assay, flow cytometry, real-time polymerase chain reaction(PCR), Western blot and immunocytochemical staining were used to detect the pathological changes of celastrol on LECs. Then, we cultured Sprague-Dawley rat lens in medium as a semi-in vivo model to find the function of celastrol further.RESULTS: We found that celastrol inhibited the migration of LECs, as well as proliferation(P<0.05). In addition, it induced the G2/M phase arrest by cell cyclerelated proteins(P<0.01). Moreover, celastrol inhibited epithelial-mesenchymal transition(EMT) by the blockade of TGF-β/Smad and Jagged/Notch signaling pathways.CONCLUSION: Our study demonstrates that celastrol could inhibit TGF-β2-induced lens fibrosis and raises the possibility that celastrol could be a potential novel drug in prevention and treatment of fibrotic cataract.
基金supported by the Niche Area Grant of the Hong Kong Polytechnic University through the projects JBB71 and BB8V
文摘The expression of the anti-apoptotic molecules Bcl-2 and transforming growth factor-beta 1 is known to confer protective effects on the cerebral ischemia-reperfusion injury.The current study investigated the expression levels of Bcl-2 and transforming growth factor-beta 1 in response to multiple pre-ischemia electro-acupuncture at acupoints Zusanli(ST36)and Fengchi(GB20) stimulation.Rats were divided into five groups:uninjured,control,non-acupoint,GB20 and ST36. Rats in the non-acupoint,GB20 and ST36 groups received 30 minutes(3 times or 18 times)of electro-acupuncture stimulation before experimental cerebral ischemia was induced.Bcl-2 and transforming growth factor-beta 1 were found to be significantly increased in the ST36 groups with either 3 or 18 electro-acupuncture treatments(P〈0.05).The production was higher with 18 electro-acupuncture treatments in the ST36 groups(P〈0.05).In the GB20 groups,significant increase was only observed in transforming growth factor-beta 1 with 18 electro-acupuncture treatments(P〈0.05).No significant elevation of the level of transforming growth factor-beta 1 was observed in the non-acupoint groups.However,the production of Bcl-2 increased with 18 treatments in the non-acupoint groups(P〈0.05).The data suggest that multiple pre-ischemia electro-acupuncture at ST36 was effective in conferring neuroprotective effect on the brain by means of upregulation of Bcl-2 and transforming growth factor-beta 1 and the effect was increase with the number of treatment.
文摘Transforming growth factor-beta (TGF-β) type II receptor (TβRⅡ) levels are extremely low in the brain tissue of patients with Alzheimer's disease. This receptor inhibits TGF-β1/SMAD signaling and thereby aggravates amyolid-beta deposition and neuronal injury. Dab2, a specific adapter protein, protects T RII from degradation and ensures the effective conduction of TGF-β 1/SMAD signaling. In this study, we used an adenoviral vector to overexpress the Dab2 gene in the mouse hippocampus and investigated the regulatory effect of Dab2 protein on TGF-β1/SMAD signaling in a mouse model of Alzheimer's disease, and the potential neuroprotective effect. The results showed that the TβRⅡ level was lower.in APP/PS1 mouse hippocampus than in normal mouse hippocampus. After Dab2 expression, hippocampal TβRⅡ and p-SMAD2/3 levels were signifi- cantly increased, while amyloid-beta deposition, microglia activation, tumor necrosis factor- and interleulin-6 levels and neuronal loss were significantly attenuated in APP/PS1 mouse brain tissue. These results suggest that Dab2 can exhibit neuroprotective effects in Alzheimer's disease by regulating TGF-β1/SMAD signaling.
基金Supported by National High Technology Research and Development Program("863"Program)of China(No.2006AA02A132)Key Developing Discipline of Hebei Province(No.201221)
文摘AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P 【0.01) and the length of F-actin,reduced the mean optical density(P 【0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.
基金Supported by National Natural Science Foundation of China(No.81600754)。
文摘AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS: Retinal pigment epithelial(ARPE-19) cells were cultured with no serum for 12 h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7 c mimcs(miR-let7 cM), miR-let7 c mimcs negative control(miR-let7cMNC) and miR-let7 c inhibitor(miR-let7 cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS: The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B(NF-κB) signaling pathway was activated after induction by TGF-β2(P<0.05). In turn, overexpressed miR-let7 c significantly inhibited TGF-β2-induced EMT(P<0.05). However, miR-let7 c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082(P<0.01). CONCLUSION: The miR-let7 c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.
基金Supported by the Suzhou Special Project of Diagnosis and Treatment for Key Clinical Disease,No.LCZX201715the Natural Science Foundation of Jiangsu Province,No.BK20161232the Science and Technology Development Fund of Nanjing Medical University,No.NMUB2018215.
文摘BACKGROUND The incidence of inflammatory bowel disease,a chronic intestinal inflammatory disorder that includes Crohn’s disease(CD)and ulcerative colitis,is rising.Circular RNAs are considered valuable diagnostic biomarkers for CD.Current evidence supports the views that epithelial-mesenchymal transition(EMT)plays an important role in CD pathogenesis,and that hsa-miR-130a-3p can inhibit transforming growth factor-β1(TGF-β1)-induced EMT.Our previous study revealed that hsa_circRNA_102610 was upregulated in CD patients.Moreover,we predicted an interaction between hsa_circRNA_102610 and hsa-miR-130a-3p.Thus,we hypothesized that hsa_circRNA_102610 may play roles in the proliferation and EMT of intestinal epithelial cells by sponging hsa-miR-130a-3p to participate in the pathogenesis of CD.AIM To explore the mechanism of hsa_circRNA_102610 in the pathogenesis of CD.METHODS The relative expression levels of hsa_circRNA_102610 and hsa-miR-130a-3p in patients were detected by quantitative reverse transcription-polymerase chain reaction.The proliferation of human intestinal epithelial cells(HIECs)and normal-derived colon mucosa cell line 460(NCM460)cells was detected by cell counting kit-8,5-ethynyl-2’-deoxyuridine staining and cell cycle assays following overexpression or downregulation of hsa_circRNA_102610.Cell proliferation assays were performed as described above in a rescue experiment with hsa-miR-130a-3p mimics.The interaction of hsa_circRNA_102610 and hsa-miR-130a-3p was verified by fluorescence in situ hybridization and dual luciferase reporter assays.The relative expression levels of CyclinD1,mothers against decapentaplegic homolog 4(SMAD4),E-cadherin,N-cadherin and Vimentin were detected by western blotting following hsa_circRNA_102610 overexpression,TGF-β1-induced EMT or hsa-miR-130a-3p mimic transfection(in rescue experiments).RESULTS Upregulation of hsa_circRNA_102610 was determined to be positively correlated with elevated fecal calprotectin levels in CD(r=0.359,P=0.007)by Pearson correlation analysis.Hsa_circRNA_102610 promoted the proliferation of HIECs and NCM460 cells,while hsa-miR-130a-3p reversed the cell proliferationpromoting effects of hsa_circRNA_102610.Fluorescence in situ hybridization and dual luciferase reporter assays showed that hsa_circRNA_102610 directly bound hsa-miR-130a-3p in NCM460 and 293T cells.An inverse correlation between downregulation of hsa-miR-130a-3p and upregulation of hsa_circRNA_102610 in CD patients was observed(r=-0.290,P=0.024)by Pearson correlation analysis.Moreover,overexpression of hsa_circRNA_102610 promoted SMAD4 and CyclinD1 protein expression validated by western-blotting.Furthermore,overexpression of hsa_circRNA_102610 promoted TGF-β1 induced EMT in HIECs and NCM460 cells via targeting of hsa-miR-130a-3p,with increased expression of Vimentin and N-cadherin and decreased expression of E-cadherin.CONCLUSION Hsa_circRNA_102610 upregulation in CD patients could promote the proliferation and EMT of intestinal epithelial cells via sponging of hsa-miR-130a-3p.
基金Supported by the Outstanding Young Medical Personnel of Qingdao City
文摘AIM:To study the inhibition of nuclear factor kappa-B p65(NF-κB p65)antisense oligodeoxynucleotide(ASODN)on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2(TGF-β2).·M ETHODS:NF-κBp65ASODNand NF-κBp65missense oligodeoxynucleotide(MSODN)were designed and synthesized.Human lens epithelial cell line(HLE B-3)cells were prepared for study and divided into 7 groups.Control group was HLE B-3 cells cultured in dulbecco’s modified eagle medium(DMEM).T1,T2,and T3 group were HLE B-3 cells cultured in DMEM with 10 ng/m L TGF-β2 for 6h,12h,24h respectively.A+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2for 24h after transfected by NF-κB p65 ASODN for 24h.M+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after transfected by NF-κB p65 MSODN for 24h.The negative control group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after cultured with transfer agent(Hi Per Fect)for 24h.Cell morphology was observed at different time points using an inverted microscope.The expression of NF-κB p65 m RNA was detected with reverse transcription-polymerase chain reaction(RT-PCR),and the expression ofα-smooth muscle actin(α-SMA)protein was assayed with ELISA.·RESULTS:With the TGF-β2 stimulation prolongation,the expression of NF-κB p65 m RNA and a-SMA protein increased in T1,T2,T3 groups compared with the control group,and the difference was statistically significant(〈0.05).NF-κB p65 ASODN lowered the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.NF-κB p65 MSODN and Hi Per Fect did not lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.The difference between control group and A+T group was not statistically significant(〉0.05),but the difference among A+T group and other groups was statistically significant(〈0.05).·CONCLUSION:NF-κB p65 ASODN could lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2,and antagonized TGF-β2-induced transdifferentiation of HLE B-3.NF-κB p65ASODN could be used as a new biological therapeutic target of posterior capsular opacification.
文摘BACKGROUND The epiphyseal growth plate is an important anatomical segment localized on the ends of a long bone.Despite the abovementioned atractive reasons for alendronate’s use,few data on the effect of alendronate during epiphyseal growth exist.AIM Verify the effect of alendronate on the growth epiphyseal plate,and compare its effect with the size of the femur during the double-staining of the immunolocalization of transforming growth factor-β1(TGF-β1)and bone morphogenetic protein-2(BMP2)in endochondral ossifing in specimens that have received alendronate.METHODS Forty newborn rats were randomly divided into two groups:a control group(were given applications of 1 mg/kg physiologic saline)and a group that received Alendronate(a dose of 2.5 mg/kg).These groups were then divided into two subgroups for euthanasia in two and 12 d of life.After euthanasia,the femurs were removed,and the femoral bones were measured linearly between the apex of the greater trochanter until the lower intercondylar midlle face to verify the probable bone growth between 3 and 12 d in control and alednroanto treated rats.Posteriorly,the surgical pieces were also sent to the histopathology laboratory to produce histological slides.The obtained slides were stained with hematoxylin and eosin to measure each of the cartilage zones in endochondral development.and other slides were immunohistochemically tested for anti-TGF-β1 and BMP-2 antibodies to investigate the immunolocalization of these proteins in the epiphyseal plaque area.RESULTS On the third day,some diferences between the control group and specimens treated with alendronate were verified.Macroscopiccaly,we found similarities in size between the femoral bones when we compared the control group with the specimens that received alendronate.On the 12^th day,the bone size of the mice receiving the drug was significantly smaller than those of the control group.These results coincide with changes in the TGF-β1 and BMP-2 expression.In the specimens that received alendronate,the TGF-β1 was expressed in some sites of trabecular bone that was neoformed,peripherally to the bone marrow area.The BMP-2 was also positive in proliferative chondrocytes and hypertrofic chondrocytes.On the 12^th day,all layers of chondrocytes exhibited positivity for BMP-2 in the specimens that received alendronate.In the interface between the trabecular bone and cartilage,an area of disorganized bone deposition was evident.Neoformed bone also appeared to be different at 12 d.In the control group,BMP-2 was positive in an intense area of bone trabeculae,whereas the alendronate-treated group showed TGF-β1 positive trabeculae and a greater bone area.CONCLUSION Alendronate alters the immunolocalization of TGF-β1 and BMP-2 simultaneously,a condition that changes the usual histological aspects of the cartilage zone and impairs epiphysis growth and femur growth.
文摘Background: Cyclooxygenase-2 (COX-2) and transforming growth factor-beta1 (TGF-β1) are modulated in variety cancers including Hepatocellular carcinoma (HCC). However, there is a paucity of data concerning their role in the pathologic process of recurrence of HCC following hepatectomy. We herein assessed the role of the hepatic expression of COX-2 and TGF-β as predictors for patients with early recurrence within 2 years of HCC diagnosis. Methods: Sixty patients with HCC who underwent curative hepatectomy between 2000 and 2003 were entered in the present study. The immunoreactivity and distribution patterns of COX-2 and TGF-β1 were examined in both the HCC and the adjacent nonHCC tissues of the liver. Risk factors of tumor recurrence within 2 years, including COX-2 and TGF-β1 expression, were investigated by univariate and multivariate analyses. Results: Among 60 patients, 31 patients had early recurrences within 2 years and 14 patients recurred after 2 years following surgery. Patients with low COX-2 expression in the HCC tissues and adjacent nonHCC tissues had favorable disease-free survival (p = 0.002 and p β1 expression in the nonHCC tissues had also longer disease-free survival (p = 0.045). Based on the expression patterns of COX-2 and TGF-β1, patients with low COX-2 and positive TGF-β1 expression in the nonHCC tissues had favorable overall and disease-free survival (p β1 signaling in nontumor tissues suggested high risk of recurrence and poor survival to the HCC patients following hepatectomy.
基金Programme National de Recherche Dermatologie 2006, Institut Nationale de la Santé Et de la Recherche Médicale, Groupe Franais de Recherche sur la Sclérodermie, and Associa-tion des Slérodermiques de France
文摘Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of type I collagen gene expression and in the development of fibrosis, demonstrated both/n vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes.
文摘BACKGROUND:Organ fibrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiated by a variety of pathological, physiological, biochemical, and physical factors. Regardless of their different etiologies, they all share a common pathogenetic process: excessive activation of the key profibrotic cytokine, transforming growth factor-β (TGF-β). Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor of the nuclear receptor superfamily, has received particular attention in recent years, because the activation of PPARγ by both natural and synthetic agonists could effectively inhibit TGF-β-induced profibrotic effects in many organs. DATA SOURCES: The English-language medical databases, PubMed, Elsevier and SpringerLink were searched for articles on PPARγ, TGF-β, and fibrosis, and related topics. RESULTS: TGF-β is recognized as a key profibrotic cytokine. Excessive activation of TGF-β increases synthesis of extracellular matrix proteins and decreases their degradation, associated with a gradual destruction of normal tissue architecture and function, whereas PPARγ agonists inhibit TGF-β signal transduction and are effective antifibrogenic agents in many organs including the liver, lung, kidney, skin and heart. CONCLUSIONS: The main antifibrotic activity of PPARγ agonists is to suppress the TGF-β signaling pathway by so-called PPARγ-dependent effect. In addition, PPARγ agonists, especially 15d-PGJ2, also exert potentially antifibrotic activity independent of PPARγ activation. TGF-β1/Smads signaling not only plays many essential roles in multiple developmental processes, butalso forms cross-talk networks with other signal pathways, and their inhibition by PPARγ agonists certainly affects the cytokine networks and causes non-suspected side-effects. Anti-TGF-β therapies with PPARγ agonists may have to be carefully tailored to be tissue-and target gene-specific to minimize side-effects, indicating a great challenge to the medical research at present.
文摘Objective To investigate the role of transforming growth factor-131 (TGF-β1)/Smad4 pathway in development of renal fibrosis in streptozotocin (STZ)-induced diabetic nephropathy (DN) rats and explore its possible mechanism. Methods Male Wistar rats weighing 180-220 g were divided into 5 groups: group A ( normal control), group B [ diabetes mellitus (DM) 2 weeks ], group C ( DM 4 weeks), group D ( DM 8 weeks), and group E ( DM 16 weeks). Except for the normal control group, other groups were induced DM by single injection of STZ (55 mg/kg) respectively. Blood glucose level, serum creatinine, and 24-hour urine protein were examined. Expressions of TGF-β1 and Smad4 protein and mRNA in kidney were detected using immunohistochemical technique, Western blot, and real-time PCR. mRNA expressions of stromelysin-1 ( MMP-3 ), tissue inhibitor of metalloproteinase-1 ( TIMP-1 ), and collagen Ⅲ in kidney were also detected by real-time PCR. Results The levels of blood glucose, serum creatinine, and 24-hour urine protein in rats of group B, C, D, and E were higher than those of the control group. With the progression of renal fibrosis, the expressions of TGF-β1 and Smad4 protein and mRNA in kidney of diabetic rats elevated. In addition, the renal MMP-3 mRNA expression diminished in diabetic rats, while TIMP-1 and collagen Ⅲ mRNA increased. Conclusions In STZ-induced diabetic rats, the TGF-β1/Smad4 appears to play an important role in renal fibrosis of DN. The increased expression of TGF-β1 and Smad4 might result in the transcriptional regulation of downstream target genes of TGF-β1/Smad4 pathway, which contributes to the progression of renal fibrosis in diabetic rats.
基金Supported by Science Foundation of Education Department of Heilongjiang Province,China,no.12541430
文摘To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting.RESULTSExpression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells.CONCLUSIONmiR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway.
文摘Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor progression and metastasis of advanced prostate cancer. In the present study, TGF-β1 was shown to induce VEGFA165 secretion from both normal cell lines (HPV7 and RWPE1) and prostate cancer cell lines (DU 145 and PC3). Conversely, hypoxia-stimulated VEGFA165 secretion was observed only in prostate cancer cell lines. Hypoxia induced TGF-β1 expression in PC3 prostate cancer cells, and the TGF-β1 type I receptor (ALK5) kinase inhibitor partially blocked hypoxia-mediated VEGFA16s secretion. This effect of hypoxia provides a novel mechanism to increase VEGFA expression in prostate cancer cells. Although autocrine signaling of VEGFA has been implicated in prostate cancer progression and metastasis, the associated mechanism is poorly characterized. VEGFA activity is mediated via VEGF receptor (VEGFR) 1 (Fit-l) and 2 (FIk-I/KDR). Whereas VEGFR-1 mRNA was detected in normal prostate epithelial cells, VEGFR-2 mRNA and VEGFR protein were expressed only in PC3 cells. VEGFA165 treatment induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERKI/2) in PC3 cells but not in HPV7 cells, suggesting that the autocrine function of VEGFA may be uniquely associated with prostate cancer. Activation of VEGFR-2 by VEGFA165 was shown to enhance migration of PC3 cells. A similar effect was also observed with endogenous VEGFA induced by TGF-β1 and hypoxia. These findings illustrate that an autocrine loop of VEGFA via VEGFR-2 is critical for the tumorigenic effects of TGF-β1 and hypoxia on metastatic prostate cancers.
基金Supported by the College Science and Technology Developing Foundation of Shanghai, No. 02BK14
文摘AIM: To investigate the effect of various concentrations of tetrandrine on activation of quiescent rat hepatic stellate cells (HSCs) and transforming growth factor-β (TGF-β) signaling in vitro.METHODS: HSCs were isolated from rats by in situperfusion of liver and 18% Nycodenz gradient centrifugation, and primarily cultured on uncoated plastic plates for 24 hwith DMEM containing 20% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, the HSCs were cultured in 2% FBS/DMEM with tetrandrine (0.25, 0.5, 1,2 mg/L, respectively). Cell morphological features were observed under an inverted microscope, smooth muscleα-actin (α-SMA) was detected by immunocytochemistry and image analysis system, laminin (LN) and type Ⅲprocollagen (PCⅢ) in supernatants were determined byradioimmunoassay. TGF-β1 mRNA, Smad 7 mRNA and Smad 7 protein were analyzed with RT-PCR and Western blotting, respectively.RESULTS: Tetrandrine at the concentrations of 0.25-2 mg/L prevented morphological transformation of HSC from the quiescent state to the activated one, while α-SMA, LN and PCⅢ expressions were inhibited. As estimated by gray values, the expression of α-SMA in tetrandrine groups (0.25, 0.5, 1, 2 mg/L) was reduced from 21.3% to 42.2%(control: 0.67, tetrandrine groups: 0.82, 0.85, 0.96, or 0.96, respectively, which were statistically different from the control, P<0.01), and the difference was more significant in tetrandrine at 1 and 2 mg/L. The content of LN in supernatants was significantly decreased in tetrandrine groups to 58.5%, 69.1%, 65.8% or 60.0% that of the control respectively, and that of PCⅢ to 84.6%, 81.5%,75.7% or 80.7% respectively (P<0.05 vs control), with no significant difference among tetrandrine groups. RTPCR showed that TGF-β1 mRNA expression was reduced by tetrandrine treatments from 56.56% to 87.90% in comparison with the control, while Smad 7 mRNA was increased 1.4-4.8 times. The TGF-β1 mRNA and Smad 7 mRNA expression was in a significant negative correlation (r= -0.755, P<0.01), and both were significantly correlated with α-SMA protein expression (r = -0.938, P<0.01;r = 0.938, P<0.01, respectively). The up-regulation of Smad 7 protein by tetrandrine (1 mg/L)was confirmed by Western blotting as well.CONCLUSION: Tetrandrine has a direct inhibiting effect on the activation of rat HSCs in culture. It up-regulates the expression of Smad 7 which in turn blocks TGF-β1 expression and signaling.
基金Supported by the Natural Science Foundation of Jiangsu Province,China,No.BK2016157the National Natural Science Foundation of China,No.81673973+1 种基金Phase Ⅱ Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,No.035062002003Developing Program for Highlevel Academic Talent in Jiangsu Hospital of TCM,No.y2018rc16
文摘AIM To explore the role and mechanism of total flavone of Abelmoschus manihot(TFA) on epithelial-mesenchymal transition(EMT) progress of Crohn's disease(CD) intestinal fibrosis.METHODS First,CCK-8 assay was performed to assess TFA on the viability of intestinal epithelial(IEC-6) cells and select the optimal concentrations of TFA for our further studies.Then cell morphology,wound healing and transwell assays were performed to examine the effect of TFA on morphology,migration and invasion of IEC-6 cells treated with TGF-β1.In addition,immunofluorescence,real-time PCR analysis(q RT-PCR) and western blotting assays were carried out to detect the impact of TFA on EMT progress.Moreover,western blotting assay was performed to evaluate the function of TFA on the Smad and MAPK signaling pathways.Further,the role of co-treatment of TFA and si-Smad or MAPK inhibitors has been examined by q RTPCR,western blotting,morphology,wound healing andtranswell assays.RESULTS In this study,TFA promoted transforming growth factor-β1(TGF-β1)-induced(IEC-6) morphological change,migration and invasion,and increased the expression of epithelial markers and reduced the levels of mesenchymal markers,along with the inactivation of Smad and MAPK signaling pathways.Moreover,we revealed that si-Smad and MAPK inhibitors effectively attenuated TGF-β1-induced EMT in IEC-6 cells.Importantly,co-treatment of TFA and si-Smad or MAPK inhibitors had better inhibitory effects on TGF-β1-induced EMT in IEC-6 cells than either one of them.CONCLUSION These findings could provide new insight into the molecular mechanisms of TFA on TGF-β1-induced EMT in IEC-6 cells and TFA is expected to advance as a new therapy to treat CD intestinal fibrosis.