To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a ex...To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting.RESULTSExpression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells.CONCLUSIONmiR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway.展开更多
The effects of tanshinone ⅡA (TSN) on transforming growth factor β1 (TGFβ1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of rena...The effects of tanshinone ⅡA (TSN) on transforming growth factor β1 (TGFβ1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of renal interstitial fibrosis. Rat renal fibroblasts of the line NRK/49F were cultured in vitro, stimulated with 5 ng/mL TGFβ1 and pretreated with 10-6, 10-5, 10-4 mol/L TSN respectively. The mRNA levels of fibronectin (FN) were examined by RT-PCR. The protein expression of FN and Smads was detected by Western blot. TGFβ1 induced the expression of FN mRNA and Smads in a time-dependent manner in a certain range. Compared with pre-stimulation, the FN mRNA and protein levels were increased by 1.1 times and 1.5 times respectively (P〈0.01, P〈0.01), and the protein expression of phosphorylated Smad2/3 (p-Smad2/3) increased by 7 times at the end of TGFβ1 stimulation (P〈0.01). TSN pretreatment may down-regulate the FN and p-Smad2/3 expression in a dose-dependent manner. 10-6 mol/L TSN pretreatment had no effect on the FN and p-Smad2/3 expression (both P〉0.05). After pretreatment with 10-5 and 10-4 mol/L TSN, the FN mRNA levels were decreased by 28.1% and 43.8% respectively (P〈0.05, P〈0.01), the FN protein levels were decreased by 40% and 44% respectively (P〈0.05, P〈0.05), and the p-Smad2/3 protein expression were decreased by 40% and 65% respectively (P〈0.05, P〈0.01). The inhibitory effect of TSN on renal interstitial fibrosis may be related to its blocking effect on TGFβ1-Smads signal pathway in renal intersti- tial fibroblasts.展开更多
BACKGROUND The transforming growth factor β(TGFβ) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFβ type Ⅱ receptor(TGFβR2), followed by the recruitment of TGFβR1 fin...BACKGROUND The transforming growth factor β(TGFβ) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFβ type Ⅱ receptor(TGFβR2), followed by the recruitment of TGFβR1 finally triggering downstream signaling pathway.AIM To find drugs targeting TGFβR2 that inhibit TGFβR1/TGFβR2 complex formation, theoretically inhibit TGFβ signaling pathway, and thereby ameliorate liver fibrosis.METHODS Food and Drug Administration-approved drugs were screened for binding affinity with TGFβR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8(CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect.RESULTS We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine(DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFβ induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFβR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFβR2 disrupted the binding of TGFβR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson’s trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver.CONCLUSION DHE alleviates liver fibrosis by binding to TGFβR2 thereby suppressing TGFβ signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.展开更多
AIM: To characterize the expression of members of the transforming growth factor-beta (TGF-β)/Smad/ connective tissue growth factor (CTGF) signaling pathway in the tissue of benign biliary stricture, and to investiga...AIM: To characterize the expression of members of the transforming growth factor-beta (TGF-β)/Smad/ connective tissue growth factor (CTGF) signaling pathway in the tissue of benign biliary stricture, and to investigate the effect of TGF-β signaling pathway in the pathogenesis of benign biliary stricture. METHODS: Paraffin embedded materials from 23 cases of benign biliary stricture were analyzed for members of the TGF-β/Smad/CTGF signaling pathway. TGF-β_1, TβRⅠ, TβRⅡ, Smad4, Smad7 and CTGF protein were detected by immunohistochemical strepto-advidinbiotin complex method, and CTGF mRNA was evaluated by hybridization in situ, while 6 cases of normal bile duct served as controls. The percentages of positive cells were counted. The correlation between TGF-β_1, Smad4 and CTGF was analyzed. RESULTS: The positive expression ratios of TGF-β_1, TβRⅠ , TβRⅡ , Smad4, CTGF and CTGF mRNA in 23 cases with benign biliary stricture were 91.3%, 82.6%, 87.0%, 78.3%, 82.6% and 65.2%, respectively, signifi cantly higher than that in 6 cases of normal bile duct respectively (vs 33.3%, 16.7%, 50.0%, 33.3%, 50.0%, 16.7%, respectively, P < 0.05). The positiveexpression ratio of Smad7 in cases with benign biliary stricture was 70.0%, higher than that in normal bile duct, but this difference is not statistically signifi cant 70.0% vs 50%, P > 0.05). There was a positive correlation between positive expression of TGF-β_1, Smad4 and CTGF in cases with benign biliary stricture. CONCLUSION: The high expression of TGF-β/Smad/ CTGF signaling pathway plays an important role in the pathogenesis of benign biliary stricture.展开更多
BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the...BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the expression of the Smad3 and Smad7 genes in the process of PSC activation, and explore the mechanisms of chronic pancreatitis. METHODS: The expressions of Smad3 and Smad7 in PSCs before and after TGF-beta 1 treatment were detected by reverse transcription-polymerase chain reaction and Western blotting analysis. Smad3 expression was detected in PSCs after treatment with 5 ng/ml of TGF-beta 1 for 24 hours. RESULTS: Smad7 expression was decreased in TGF-beta 1 -activated PSCs (P<0.05) in a dose-dependent manner. When TGF-beta 1 concentration reached 10 ng/ml, the expression of p-Smad3, Smad3, and Smad7 was inhibited (P<0.05). CONCLUSIONS: TGF-beta 1 promotes the expression of Smad3 and inhibits the expression of Smad7 during the activation of PSCs. In contrast, high-dose TGF-beta 1 downregulates the expression of Smad3 in completely activated PSCs.展开更多
Objective:persistent hyperinflammation is an important reason for the development of diabetic foot ulcer.Notch signaling is an important signaling pathway involved in the inflammatory response and cell proliferation i...Objective:persistent hyperinflammation is an important reason for the development of diabetic foot ulcer.Notch signaling is an important signaling pathway involved in the inflammatory response and cell proliferation in diabetic foot ulcer rats.This paper aims to explore the effect of Notch signaling on inflammatory factors,chemokines and growth factors through the intervention of Notch signaling in diabetic foot ulcer rats.Methods:the experimental model was made by using high-fat feed combined with streptozotocin(STZ)to cause diabetes,and the experimental model of diabetic foot ulcer was established by constant temperature and constant pressure scald apparatus.The normal ulcer model was used as a control.The intervention controls of the experimental model included normal saline,western medicine growth factor,Notch agonist Jagged1,Notch signaling inhibitor ly-411575,and the intervention of traditional Chinese medicine Zizhu ointment for 7 days.Serum il-1,il-6,TNF-radiation,and il-17 were detected by ELISA.Real-time PCR was used to detect the inflammatory factors,chemokines,and growth factors associated with Notch signaling in wound tissues:tnf-uum,il-1,il-6,il-17,interleukin-8,ip-10,McP-1,TGF-uum,TGF-livelihood.Results:serum levels of il-1,il-6,TNF-radiation and il-17 in diabetic foot ulcer rats were significantly higher than that in normal ulcer rats.The contents of il-1,il-6,TNF-radiation and il-17a in ly-411575 group and Zizhu ointment group were significantly reduced.Real-time PCR results of wound tissue showed that the levels of inflammatory cytokines il-1,il-6,TNF-radiation,il-17 and chemokines ip-10,il-8 and McP-1 in the wound tissue of diabetic foot ulcer rat model were significantly higher than that of normal ulcer model,and the levels of growth factor TGF-exposure were lower than that of normal ulcer model.LY-411575 significantly reduced il-1,il-6,TNF-maxima,il-17,and the chemokines ip-10,il-8,and McP-1 in diabetic foot ulcer rats,and reduced the expression of TGF-,TGF-earth.Jagged1 can increase the expression of TGF--,TGF---,suggesting that inhibition of the Notch signaling pathway can reduce the expression of the inflammatory factors il-1,il-6,TNF--,il-17a,il-8,and the growth factors TGF--,TGF---.Zizhu ointment can reduce the levels of il-1,il-6,TNF-benand,il-17,and the chemokines ip-10,il-8,and McP-1 on the wound surface of diabetic foot rats,and improve the expression of TGF-benand TGF-SUNS.Ly-411575 inhibited the expression of TGF-bento and TGF-promoting of Zizhu ointment.Conclusion:the expression of inflammatory cytokines and chemokines was higher and the expression of growth factors was lower in diabetic foot ulcer rats than in normal ulcer rats.Inhibition of Notch signaling pathway can reduce the expression of inflammatory factors,chemokines and growth factors in experimental model rats,and Notch signaling pathway can promote inflammation and cell proliferation.Zizhu ointment can reduce the levels of inflammatory cytokines and chemokines in diabetic foot ulcer rats,improve the expression of growth factors,and reduce wound inflammation,which may be related to the inhibition of Nocth signal expression.展开更多
Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce t...Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of type I collagen gene expression and in the development of fibrosis, demonstrated both/n vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes.展开更多
BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the stron...BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGF beta 1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGF beta 1 or IGFBPrP1 and inhibited TGF beta 1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of a-smooth muscle actin (alpha-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGF beta 1 gene (AdTGF beta 1) induced IGFBPrP1 expression while that of alpha-SMA, collagen I, fibronectin, and TGF beta 1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGF beta 1, alpha-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGF beta 1 expression reduced the IGFBPrP1-stimulated expression of alpha-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGF beta 1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGF beta 1-depedent manner, and may act as an upstream regulatory factor of TGF beta 1 in the Smad pathway.展开更多
Transforming growth factor(TGF)-β family members are multifunctional cytokines regulating diverse cel- lular functions such as growth,adhesion,migration, apoptosis,and differentiation.TGF-βs elicit their effects via...Transforming growth factor(TGF)-β family members are multifunctional cytokines regulating diverse cel- lular functions such as growth,adhesion,migration, apoptosis,and differentiation.TGF-βs elicit their effects via specific typeⅠand typeⅡserine/threonine kinase receptors and intracellular Smad transcription factors. Knockout mouse models for the different components of the TGF-β signaling pathway have revealed their critical roles in smooth muscle cell(SMC)differentia- tion.Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular disorders such as aorta aneurysm and congenital heart diseases due to SMC defects.In this review,the current understanding of TGF-β function in SMC differentiation is highlighted,and the role of TGF-βsignaling in SMC- related diseases is discussed.展开更多
AIM To explore the role and mechanism of total flavone of Abelmoschus manihot(TFA) on epithelial-mesenchymal transition(EMT) progress of Crohn's disease(CD) intestinal fibrosis.METHODS First,CCK-8 assay was perfor...AIM To explore the role and mechanism of total flavone of Abelmoschus manihot(TFA) on epithelial-mesenchymal transition(EMT) progress of Crohn's disease(CD) intestinal fibrosis.METHODS First,CCK-8 assay was performed to assess TFA on the viability of intestinal epithelial(IEC-6) cells and select the optimal concentrations of TFA for our further studies.Then cell morphology,wound healing and transwell assays were performed to examine the effect of TFA on morphology,migration and invasion of IEC-6 cells treated with TGF-β1.In addition,immunofluorescence,real-time PCR analysis(q RT-PCR) and western blotting assays were carried out to detect the impact of TFA on EMT progress.Moreover,western blotting assay was performed to evaluate the function of TFA on the Smad and MAPK signaling pathways.Further,the role of co-treatment of TFA and si-Smad or MAPK inhibitors has been examined by q RTPCR,western blotting,morphology,wound healing andtranswell assays.RESULTS In this study,TFA promoted transforming growth factor-β1(TGF-β1)-induced(IEC-6) morphological change,migration and invasion,and increased the expression of epithelial markers and reduced the levels of mesenchymal markers,along with the inactivation of Smad and MAPK signaling pathways.Moreover,we revealed that si-Smad and MAPK inhibitors effectively attenuated TGF-β1-induced EMT in IEC-6 cells.Importantly,co-treatment of TFA and si-Smad or MAPK inhibitors had better inhibitory effects on TGF-β1-induced EMT in IEC-6 cells than either one of them.CONCLUSION These findings could provide new insight into the molecular mechanisms of TFA on TGF-β1-induced EMT in IEC-6 cells and TFA is expected to advance as a new therapy to treat CD intestinal fibrosis.展开更多
BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1(PREX1)was reported to be overexpressed in some cancers and involved in cancer development,but its expression and significance in gast...BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1(PREX1)was reported to be overexpressed in some cancers and involved in cancer development,but its expression and significance in gastric cancer remain unclear.AIM To evaluate the expression of PREX1 in gastric cancer and its significance in the development of gastric cancer,especially to evaluate the potential mechanism of PREX1 in gastric cancer.METHODS Bioinformatic analysis was performed in order to examine the expression of PREX1 in gastric cancer.The relationship between the survival rate of gastric cancer patients and PREX1 expression was assessed by Kaplan Meier portal.The Gene Set Enrichment Analysis and the correlation between PREX1 and transforming growth factor(TGF)β1 pathway-related mediators were evaluated by cBioPortal for Cancer Genomics.Western blotting and reverse transcriptase polymerase chain reaction assay were used to test the role of TGFβ1 on the expression of PREX1.Western blotting and dual-luciferase reporter system was used to evaluate the effect of PREX1 on the activation of TGFβ1 pathway.Wound healing and Transwell assay were used to assess the effect of PREX1 on the metastasis activity of gastric cancer cells.RESULTS PREX1 was overexpressed in the gastric tumors,and the expression levels were positively associated with the development of gastric cancer.Also,the high expression of PREX1 revealed poor prognosis,especially for those advanced and specific intestinal gastric cancer patients.PREX1 was closely involved in the positive regulation of cell adhesion and positively correlated with TGFβ1-related mediators.Furthermore,TGFβ1 could induce the expression of PREX1 at both the protein and mRNA level.Also,PREX1 could activate the TGFβ1 pathway.The induced PREX1 could increase the migration and invasion activity of gastric cancer cells.CONCLUSION PREX1 is overexpressed in gastric cancer,and the high level of PREX1 predicts poor prognosis.PREX1 is closely associated with TGFβsignaling and promotes the metastasis of gastric cancer cells.展开更多
OBJECTIVE:To examine the influence of SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae)(SSPHⅠ)on hepatocellular carcinoma(HCC)metastasis,and to elucidate the underlying mechanism.METHODS:The intrahepatic m...OBJECTIVE:To examine the influence of SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae)(SSPHⅠ)on hepatocellular carcinoma(HCC)metastasis,and to elucidate the underlying mechanism.METHODS:The intrahepatic metastasis Bagg's Albino/c(BALB/c)mouse model was established with human hepatocellular carcinomas(HepG2)cells,then treated with normal saline(once per day),cisplatin(2 mg/kg,once every 2 d),and SSPHⅠ(25,50,and 75 mg/kg,once per day).Then,we assessed alterations in the hepatic pathology and target protein expressions in the intrahepatic metastasis BALB/c mouse model using a series of molecular biology techniques.RESULTS:Based on our analysis,SSPHⅠsignificantly alleviated hepatocyte necrosis and tumor cells infiltration.Moreover,SSPHⅠsuppressed extracellular matrix(ECM)degradation and angiogenesis via a decrease in matrix etalloproteinase-2(MMP-2),MMP-9,CD31,CD34,and vascular endothelial growth factor(VEGF)levels.Furthermore,SSPHⅠrepressed invasion and metastasis by suppressing the transforming growth factor-β1(TGF-β1)/Smad7 axis and epithelial-mesenchymal transition(EMT),as evidenced by the scarce TGF-β1,Ncadherin,and Vimentin expressions,and elevated Smad7 and E-cadherin expressions.CONCLUSION:The SSPHⅠ-mediated negative regulation of the TGF-β1/Smad7 axis and EMT are critical for the inhibition of HCC invasion and metastasis.展开更多
OBJECTIVE:The aim of this study was to investigate the protective effects of Tuina(a traditional Chinese massage therapy)on intervertebral disc(IVD)degeneration and the regulatory mechanisms of the transforming growth...OBJECTIVE:The aim of this study was to investigate the protective effects of Tuina(a traditional Chinese massage therapy)on intervertebral disc(IVD)degeneration and the regulatory mechanisms of the transforming growth factor-β1(TGF-β1)/small mothers against decapentaplegic(Smad)signaling pathway.METHODS:Thirty New Zealand white rabbits were randomized into five groups:the control group,model group,model+Tuina group(Tuina group),model+TGF-β1 group(TGF-β1 group),and model+TGF-β1 inhibitor SB431542 group(SB431542 group).The model was established by posterolateral annulus fibrosus puncturing(AFP).Recombinant TGF-β1 and inhibitor SB431542 was injected into the TGF-β1 group and SB431542 group with a microsyringe,respectively.The rabbits in the Tuina group received Tuina treatment along the bladder meridian for 4 weeks.Magnetic resonance imaging(MRI)was performed on rabbits before AFP and after 4 weeks of intervention.Lumbar IVDs(L2-L3 to L4-L5)were harvested after intervention.Histopathological changes in the IVDs were measured by hematoxylin and eosin(HE)staining.Type I collagen was analyzed by immunohistochemistry detection.The expression level of matrix metalloproteinase-3(MMP3)was determined by enzyme-linked immunosorbent assay.Cell apoptosis was evaluated by terminal deoxynucleotidyl transferasemediated nick end labeling and Western blotting.Realtime polymerase chain reaction and Western blotting were used to analyze the expression of TGF-β1 and Smad2/3/4 and a disintegrin and metalloproteinase with thrombospondin motifs 5.RESULTS:Posterolateral AFP induced IVD degeneration in rabbits with histopathological damage and noticeable changes in MRI images.Tuina alleviated histopathological changes and reversed the expression of extracellular matrix degeneration-related molecules and apoptosis-related proteins.Furthermore,AFP induced the activation of TGF-β1 and Smad2/3/4,whereas Tuina therapy markedly reduced the protein expression of Smad2/3 and the gene expression of TGF-β1 and Smad2/3/4.Additionally,the TGF-β1/Smad signaling pathway was activated in the TGF-β1 group,while the TGF-β1/Smad signaling pathway was inhibited in the SB431542 group.CONCLUSION:Posterolateral AFP induced disc degeneration as determined by MRI assessment and histological analysis.Tuina alleviated disc degeneration,possibly by inhibiting the fibrotic response mediated by the TGF-β1/Smad pathway,thus alleviating extracellular matrix degeneration and reducing cell apoptosis.展开更多
基金Supported by Science Foundation of Education Department of Heilongjiang Province,China,no.12541430
文摘To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway.METHODSmiR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting.RESULTSExpression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells.CONCLUSIONmiR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway.
基金a grant from Hubei Natural Science Foundation of China (No.2007ABA272).
文摘The effects of tanshinone ⅡA (TSN) on transforming growth factor β1 (TGFβ1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of renal interstitial fibrosis. Rat renal fibroblasts of the line NRK/49F were cultured in vitro, stimulated with 5 ng/mL TGFβ1 and pretreated with 10-6, 10-5, 10-4 mol/L TSN respectively. The mRNA levels of fibronectin (FN) were examined by RT-PCR. The protein expression of FN and Smads was detected by Western blot. TGFβ1 induced the expression of FN mRNA and Smads in a time-dependent manner in a certain range. Compared with pre-stimulation, the FN mRNA and protein levels were increased by 1.1 times and 1.5 times respectively (P〈0.01, P〈0.01), and the protein expression of phosphorylated Smad2/3 (p-Smad2/3) increased by 7 times at the end of TGFβ1 stimulation (P〈0.01). TSN pretreatment may down-regulate the FN and p-Smad2/3 expression in a dose-dependent manner. 10-6 mol/L TSN pretreatment had no effect on the FN and p-Smad2/3 expression (both P〉0.05). After pretreatment with 10-5 and 10-4 mol/L TSN, the FN mRNA levels were decreased by 28.1% and 43.8% respectively (P〈0.05, P〈0.01), the FN protein levels were decreased by 40% and 44% respectively (P〈0.05, P〈0.05), and the p-Smad2/3 protein expression were decreased by 40% and 65% respectively (P〈0.05, P〈0.01). The inhibitory effect of TSN on renal interstitial fibrosis may be related to its blocking effect on TGFβ1-Smads signal pathway in renal intersti- tial fibroblasts.
基金Supported by the Special Research Project for Capital Health Development,No.2022-2-2174the Beijing Municipal Science and Technology Commission,No.Z191100007619037.
文摘BACKGROUND The transforming growth factor β(TGFβ) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFβ type Ⅱ receptor(TGFβR2), followed by the recruitment of TGFβR1 finally triggering downstream signaling pathway.AIM To find drugs targeting TGFβR2 that inhibit TGFβR1/TGFβR2 complex formation, theoretically inhibit TGFβ signaling pathway, and thereby ameliorate liver fibrosis.METHODS Food and Drug Administration-approved drugs were screened for binding affinity with TGFβR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8(CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect.RESULTS We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine(DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFβ induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFβR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFβR2 disrupted the binding of TGFβR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson’s trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver.CONCLUSION DHE alleviates liver fibrosis by binding to TGFβR2 thereby suppressing TGFβ signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.
基金The grant from Shaanxi Science and Technology Project, No. 2002K10-G8
文摘AIM: To characterize the expression of members of the transforming growth factor-beta (TGF-β)/Smad/ connective tissue growth factor (CTGF) signaling pathway in the tissue of benign biliary stricture, and to investigate the effect of TGF-β signaling pathway in the pathogenesis of benign biliary stricture. METHODS: Paraffin embedded materials from 23 cases of benign biliary stricture were analyzed for members of the TGF-β/Smad/CTGF signaling pathway. TGF-β_1, TβRⅠ, TβRⅡ, Smad4, Smad7 and CTGF protein were detected by immunohistochemical strepto-advidinbiotin complex method, and CTGF mRNA was evaluated by hybridization in situ, while 6 cases of normal bile duct served as controls. The percentages of positive cells were counted. The correlation between TGF-β_1, Smad4 and CTGF was analyzed. RESULTS: The positive expression ratios of TGF-β_1, TβRⅠ , TβRⅡ , Smad4, CTGF and CTGF mRNA in 23 cases with benign biliary stricture were 91.3%, 82.6%, 87.0%, 78.3%, 82.6% and 65.2%, respectively, signifi cantly higher than that in 6 cases of normal bile duct respectively (vs 33.3%, 16.7%, 50.0%, 33.3%, 50.0%, 16.7%, respectively, P < 0.05). The positiveexpression ratio of Smad7 in cases with benign biliary stricture was 70.0%, higher than that in normal bile duct, but this difference is not statistically signifi cant 70.0% vs 50%, P > 0.05). There was a positive correlation between positive expression of TGF-β_1, Smad4 and CTGF in cases with benign biliary stricture. CONCLUSION: The high expression of TGF-β/Smad/ CTGF signaling pathway plays an important role in the pathogenesis of benign biliary stricture.
基金supported by grants from the Natural Science Foundation of Jiangsu Province,China (No. BK2006241)the Foundation for Talents in Six Fields of Jiangsu Province (No. 07-B-038)
文摘BACKGROUND: Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor beta 1 (TGF-beta 1) is a critical mediator of this process. This study aimed to determine the expression of the Smad3 and Smad7 genes in the process of PSC activation, and explore the mechanisms of chronic pancreatitis. METHODS: The expressions of Smad3 and Smad7 in PSCs before and after TGF-beta 1 treatment were detected by reverse transcription-polymerase chain reaction and Western blotting analysis. Smad3 expression was detected in PSCs after treatment with 5 ng/ml of TGF-beta 1 for 24 hours. RESULTS: Smad7 expression was decreased in TGF-beta 1 -activated PSCs (P<0.05) in a dose-dependent manner. When TGF-beta 1 concentration reached 10 ng/ml, the expression of p-Smad3, Smad3, and Smad7 was inhibited (P<0.05). CONCLUSIONS: TGF-beta 1 promotes the expression of Smad3 and inhibits the expression of Smad7 during the activation of PSCs. In contrast, high-dose TGF-beta 1 downregulates the expression of Smad3 in completely activated PSCs.
基金General project of national natural science foundation of China(No.8177150469)Youth project of national natural science foundation of China(No.81804095)Project of Shanghai collaborative innovation center of health service in traditional Chinese medicine(No.ZYJKFW201701002)。
文摘Objective:persistent hyperinflammation is an important reason for the development of diabetic foot ulcer.Notch signaling is an important signaling pathway involved in the inflammatory response and cell proliferation in diabetic foot ulcer rats.This paper aims to explore the effect of Notch signaling on inflammatory factors,chemokines and growth factors through the intervention of Notch signaling in diabetic foot ulcer rats.Methods:the experimental model was made by using high-fat feed combined with streptozotocin(STZ)to cause diabetes,and the experimental model of diabetic foot ulcer was established by constant temperature and constant pressure scald apparatus.The normal ulcer model was used as a control.The intervention controls of the experimental model included normal saline,western medicine growth factor,Notch agonist Jagged1,Notch signaling inhibitor ly-411575,and the intervention of traditional Chinese medicine Zizhu ointment for 7 days.Serum il-1,il-6,TNF-radiation,and il-17 were detected by ELISA.Real-time PCR was used to detect the inflammatory factors,chemokines,and growth factors associated with Notch signaling in wound tissues:tnf-uum,il-1,il-6,il-17,interleukin-8,ip-10,McP-1,TGF-uum,TGF-livelihood.Results:serum levels of il-1,il-6,TNF-radiation and il-17 in diabetic foot ulcer rats were significantly higher than that in normal ulcer rats.The contents of il-1,il-6,TNF-radiation and il-17a in ly-411575 group and Zizhu ointment group were significantly reduced.Real-time PCR results of wound tissue showed that the levels of inflammatory cytokines il-1,il-6,TNF-radiation,il-17 and chemokines ip-10,il-8 and McP-1 in the wound tissue of diabetic foot ulcer rat model were significantly higher than that of normal ulcer model,and the levels of growth factor TGF-exposure were lower than that of normal ulcer model.LY-411575 significantly reduced il-1,il-6,TNF-maxima,il-17,and the chemokines ip-10,il-8,and McP-1 in diabetic foot ulcer rats,and reduced the expression of TGF-,TGF-earth.Jagged1 can increase the expression of TGF--,TGF---,suggesting that inhibition of the Notch signaling pathway can reduce the expression of the inflammatory factors il-1,il-6,TNF--,il-17a,il-8,and the growth factors TGF--,TGF---.Zizhu ointment can reduce the levels of il-1,il-6,TNF-benand,il-17,and the chemokines ip-10,il-8,and McP-1 on the wound surface of diabetic foot rats,and improve the expression of TGF-benand TGF-SUNS.Ly-411575 inhibited the expression of TGF-bento and TGF-promoting of Zizhu ointment.Conclusion:the expression of inflammatory cytokines and chemokines was higher and the expression of growth factors was lower in diabetic foot ulcer rats than in normal ulcer rats.Inhibition of Notch signaling pathway can reduce the expression of inflammatory factors,chemokines and growth factors in experimental model rats,and Notch signaling pathway can promote inflammation and cell proliferation.Zizhu ointment can reduce the levels of inflammatory cytokines and chemokines in diabetic foot ulcer rats,improve the expression of growth factors,and reduce wound inflammation,which may be related to the inhibition of Nocth signal expression.
基金Programme National de Recherche Dermatologie 2006, Institut Nationale de la Santé Et de la Recherche Médicale, Groupe Franais de Recherche sur la Sclérodermie, and Associa-tion des Slérodermiques de France
文摘Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of type I collagen gene expression and in the development of fibrosis, demonstrated both/n vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes.
基金supported by a grant from the Shanxi Province Foundation for Returness(2012-4)
文摘BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGF beta 1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGF beta 1 or IGFBPrP1 and inhibited TGF beta 1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of a-smooth muscle actin (alpha-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGF beta 1 gene (AdTGF beta 1) induced IGFBPrP1 expression while that of alpha-SMA, collagen I, fibronectin, and TGF beta 1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGF beta 1, alpha-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGF beta 1 expression reduced the IGFBPrP1-stimulated expression of alpha-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGF beta 1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGF beta 1-depedent manner, and may act as an upstream regulatory factor of TGF beta 1 in the Smad pathway.
基金Supported by Grants from National Institutes of Health,No.HL093429 and No.HL107526 to Dr.Chen
文摘Transforming growth factor(TGF)-β family members are multifunctional cytokines regulating diverse cel- lular functions such as growth,adhesion,migration, apoptosis,and differentiation.TGF-βs elicit their effects via specific typeⅠand typeⅡserine/threonine kinase receptors and intracellular Smad transcription factors. Knockout mouse models for the different components of the TGF-β signaling pathway have revealed their critical roles in smooth muscle cell(SMC)differentia- tion.Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular disorders such as aorta aneurysm and congenital heart diseases due to SMC defects.In this review,the current understanding of TGF-β function in SMC differentiation is highlighted,and the role of TGF-βsignaling in SMC- related diseases is discussed.
基金Supported by the Natural Science Foundation of Jiangsu Province,China,No.BK2016157the National Natural Science Foundation of China,No.81673973+1 种基金Phase Ⅱ Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,No.035062002003Developing Program for Highlevel Academic Talent in Jiangsu Hospital of TCM,No.y2018rc16
文摘AIM To explore the role and mechanism of total flavone of Abelmoschus manihot(TFA) on epithelial-mesenchymal transition(EMT) progress of Crohn's disease(CD) intestinal fibrosis.METHODS First,CCK-8 assay was performed to assess TFA on the viability of intestinal epithelial(IEC-6) cells and select the optimal concentrations of TFA for our further studies.Then cell morphology,wound healing and transwell assays were performed to examine the effect of TFA on morphology,migration and invasion of IEC-6 cells treated with TGF-β1.In addition,immunofluorescence,real-time PCR analysis(q RT-PCR) and western blotting assays were carried out to detect the impact of TFA on EMT progress.Moreover,western blotting assay was performed to evaluate the function of TFA on the Smad and MAPK signaling pathways.Further,the role of co-treatment of TFA and si-Smad or MAPK inhibitors has been examined by q RTPCR,western blotting,morphology,wound healing andtranswell assays.RESULTS In this study,TFA promoted transforming growth factor-β1(TGF-β1)-induced(IEC-6) morphological change,migration and invasion,and increased the expression of epithelial markers and reduced the levels of mesenchymal markers,along with the inactivation of Smad and MAPK signaling pathways.Moreover,we revealed that si-Smad and MAPK inhibitors effectively attenuated TGF-β1-induced EMT in IEC-6 cells.Importantly,co-treatment of TFA and si-Smad or MAPK inhibitors had better inhibitory effects on TGF-β1-induced EMT in IEC-6 cells than either one of them.CONCLUSION These findings could provide new insight into the molecular mechanisms of TFA on TGF-β1-induced EMT in IEC-6 cells and TFA is expected to advance as a new therapy to treat CD intestinal fibrosis.
文摘BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1(PREX1)was reported to be overexpressed in some cancers and involved in cancer development,but its expression and significance in gastric cancer remain unclear.AIM To evaluate the expression of PREX1 in gastric cancer and its significance in the development of gastric cancer,especially to evaluate the potential mechanism of PREX1 in gastric cancer.METHODS Bioinformatic analysis was performed in order to examine the expression of PREX1 in gastric cancer.The relationship between the survival rate of gastric cancer patients and PREX1 expression was assessed by Kaplan Meier portal.The Gene Set Enrichment Analysis and the correlation between PREX1 and transforming growth factor(TGF)β1 pathway-related mediators were evaluated by cBioPortal for Cancer Genomics.Western blotting and reverse transcriptase polymerase chain reaction assay were used to test the role of TGFβ1 on the expression of PREX1.Western blotting and dual-luciferase reporter system was used to evaluate the effect of PREX1 on the activation of TGFβ1 pathway.Wound healing and Transwell assay were used to assess the effect of PREX1 on the metastasis activity of gastric cancer cells.RESULTS PREX1 was overexpressed in the gastric tumors,and the expression levels were positively associated with the development of gastric cancer.Also,the high expression of PREX1 revealed poor prognosis,especially for those advanced and specific intestinal gastric cancer patients.PREX1 was closely involved in the positive regulation of cell adhesion and positively correlated with TGFβ1-related mediators.Furthermore,TGFβ1 could induce the expression of PREX1 at both the protein and mRNA level.Also,PREX1 could activate the TGFβ1 pathway.The induced PREX1 could increase the migration and invasion activity of gastric cancer cells.CONCLUSION PREX1 is overexpressed in gastric cancer,and the high level of PREX1 predicts poor prognosis.PREX1 is closely associated with TGFβsignaling and promotes the metastasis of gastric cancer cells.
基金National Natural Science Foundation of China,a New Anti-cancer Plant drug,SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae),against Invasion and Metastasis of Non-small Cell Lung Cancer and Reversing Tyrosine Kinase Inhibitors Resistance basing on Human Growth Factor/c-Mesenchymal to Epithelial Transition Factor Pathway and its Molecular Mechanism of Regulating Epithelial-Mesenchymal Transition(No.8164062)the Natural Science Foundation of Guangxi Province,Study on the Antihepatic Fibrosis Mechanism of Saponins from Shuitianqi(Rhizoma Schizocapasae Plantagineae)based on Transforming Growth Factor-β/Smad Signaling Pathway(No.2019GXNSFAA245075)。
文摘OBJECTIVE:To examine the influence of SaponinⅠfrom Shuitianqi(Rhizoma Schizocapasae Plantagineae)(SSPHⅠ)on hepatocellular carcinoma(HCC)metastasis,and to elucidate the underlying mechanism.METHODS:The intrahepatic metastasis Bagg's Albino/c(BALB/c)mouse model was established with human hepatocellular carcinomas(HepG2)cells,then treated with normal saline(once per day),cisplatin(2 mg/kg,once every 2 d),and SSPHⅠ(25,50,and 75 mg/kg,once per day).Then,we assessed alterations in the hepatic pathology and target protein expressions in the intrahepatic metastasis BALB/c mouse model using a series of molecular biology techniques.RESULTS:Based on our analysis,SSPHⅠsignificantly alleviated hepatocyte necrosis and tumor cells infiltration.Moreover,SSPHⅠsuppressed extracellular matrix(ECM)degradation and angiogenesis via a decrease in matrix etalloproteinase-2(MMP-2),MMP-9,CD31,CD34,and vascular endothelial growth factor(VEGF)levels.Furthermore,SSPHⅠrepressed invasion and metastasis by suppressing the transforming growth factor-β1(TGF-β1)/Smad7 axis and epithelial-mesenchymal transition(EMT),as evidenced by the scarce TGF-β1,Ncadherin,and Vimentin expressions,and elevated Smad7 and E-cadherin expressions.CONCLUSION:The SSPHⅠ-mediated negative regulation of the TGF-β1/Smad7 axis and EMT are critical for the inhibition of HCC invasion and metastasis.
基金National Natural Science Foundation of China:Based on TGF-β1/Smads Signaling Pathway to Study the Effect Mechanism of Tuina along the Bladder Meridian on Intervertebral Disc Degeneration(82004497)China Postdoctoral Science Foundation:Based on TGF-β1/RhoA/JNK Signaling Pathway to Study the Effect Mechanism of Tuina along the Bladder Meridian on Intervertebral Disc Degeneration(No.2021M693788)。
文摘OBJECTIVE:The aim of this study was to investigate the protective effects of Tuina(a traditional Chinese massage therapy)on intervertebral disc(IVD)degeneration and the regulatory mechanisms of the transforming growth factor-β1(TGF-β1)/small mothers against decapentaplegic(Smad)signaling pathway.METHODS:Thirty New Zealand white rabbits were randomized into five groups:the control group,model group,model+Tuina group(Tuina group),model+TGF-β1 group(TGF-β1 group),and model+TGF-β1 inhibitor SB431542 group(SB431542 group).The model was established by posterolateral annulus fibrosus puncturing(AFP).Recombinant TGF-β1 and inhibitor SB431542 was injected into the TGF-β1 group and SB431542 group with a microsyringe,respectively.The rabbits in the Tuina group received Tuina treatment along the bladder meridian for 4 weeks.Magnetic resonance imaging(MRI)was performed on rabbits before AFP and after 4 weeks of intervention.Lumbar IVDs(L2-L3 to L4-L5)were harvested after intervention.Histopathological changes in the IVDs were measured by hematoxylin and eosin(HE)staining.Type I collagen was analyzed by immunohistochemistry detection.The expression level of matrix metalloproteinase-3(MMP3)was determined by enzyme-linked immunosorbent assay.Cell apoptosis was evaluated by terminal deoxynucleotidyl transferasemediated nick end labeling and Western blotting.Realtime polymerase chain reaction and Western blotting were used to analyze the expression of TGF-β1 and Smad2/3/4 and a disintegrin and metalloproteinase with thrombospondin motifs 5.RESULTS:Posterolateral AFP induced IVD degeneration in rabbits with histopathological damage and noticeable changes in MRI images.Tuina alleviated histopathological changes and reversed the expression of extracellular matrix degeneration-related molecules and apoptosis-related proteins.Furthermore,AFP induced the activation of TGF-β1 and Smad2/3/4,whereas Tuina therapy markedly reduced the protein expression of Smad2/3 and the gene expression of TGF-β1 and Smad2/3/4.Additionally,the TGF-β1/Smad signaling pathway was activated in the TGF-β1 group,while the TGF-β1/Smad signaling pathway was inhibited in the SB431542 group.CONCLUSION:Posterolateral AFP induced disc degeneration as determined by MRI assessment and histological analysis.Tuina alleviated disc degeneration,possibly by inhibiting the fibrotic response mediated by the TGF-β1/Smad pathway,thus alleviating extracellular matrix degeneration and reducing cell apoptosis.