Tensile properties, fracture characteristics and microstructures of 7055 aluminum-based alloy containing Ag after T6, T73 and RRA treatment were investigated. The results show that RRA treatment retains strength of 70...Tensile properties, fracture characteristics and microstructures of 7055 aluminum-based alloy containing Ag after T6, T73 and RRA treatment were investigated. The results show that RRA treatment retains strength of 7055-T6 with higher electrical conductivity close to that of 7055-T73 alloy, but its elongation decreases greatly. SEM fractographs reveal that intergranular cracking and shear-type transgranular cracking are both presented on the fracture appearance of 7055-T6 specimen. After T73 treatment, the fractographs mainly consist of dimple-type transgranular cracking with minor intergranular cracking. For 7055-RRA specimen, intergranular cracking dominates with minor dimples on the fracture surface. The type and size of precipitates, width of grain boundary and the ability of precipitates to impede dislocation motion vary with heat treatment regimes. Three frature models were built on the basis of microstructural analyses.展开更多
In order to understand the basic mechanism of intergranular cracking in pure metals during fatigue, stress-controlled push-pull fatigue tests were carried out with high purity aluminium. Tests were interrupted frequen...In order to understand the basic mechanism of intergranular cracking in pure metals during fatigue, stress-controlled push-pull fatigue tests were carried out with high purity aluminium. Tests were interrupted frequently so as to study the grain boundary (GB) cracking behaviour by the surface observation. The results show that crack initiation at GB was a process controlled by multi-factors, such as boundary structure, GB-slip interaction, GB sliding and so on. If these factors are varied so that the incompati- bility at a GB increased, the possibility of cyacking at the boundary will be raised. Some inteygranular cracking phenomena are not able to be explained by the GB stepping mechanism.展开更多
文摘Tensile properties, fracture characteristics and microstructures of 7055 aluminum-based alloy containing Ag after T6, T73 and RRA treatment were investigated. The results show that RRA treatment retains strength of 7055-T6 with higher electrical conductivity close to that of 7055-T73 alloy, but its elongation decreases greatly. SEM fractographs reveal that intergranular cracking and shear-type transgranular cracking are both presented on the fracture appearance of 7055-T6 specimen. After T73 treatment, the fractographs mainly consist of dimple-type transgranular cracking with minor intergranular cracking. For 7055-RRA specimen, intergranular cracking dominates with minor dimples on the fracture surface. The type and size of precipitates, width of grain boundary and the ability of precipitates to impede dislocation motion vary with heat treatment regimes. Three frature models were built on the basis of microstructural analyses.
文摘In order to understand the basic mechanism of intergranular cracking in pure metals during fatigue, stress-controlled push-pull fatigue tests were carried out with high purity aluminium. Tests were interrupted frequently so as to study the grain boundary (GB) cracking behaviour by the surface observation. The results show that crack initiation at GB was a process controlled by multi-factors, such as boundary structure, GB-slip interaction, GB sliding and so on. If these factors are varied so that the incompati- bility at a GB increased, the possibility of cyacking at the boundary will be raised. Some inteygranular cracking phenomena are not able to be explained by the GB stepping mechanism.