Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, ...Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.展开更多
Background: White matter lesions (WMLs) are common findings in brain magnetic resonance imaging (MRI) and are strongly associated with stroke incidence, recurrence, and prognosis. However, the relationship betwee...Background: White matter lesions (WMLs) are common findings in brain magnetic resonance imaging (MRI) and are strongly associated with stroke incidence, recurrence, and prognosis. However, the relationship between WMLs and transient ischemic attacks (TIAs) is not well established. This study aimed to determine the clinical significance of WMLs in patients with TIA. Methods: A total of 181 consecutive inpatients with first-ever TIA were enrolled. Brain MRls within 2 days of symptom onset were used to measure WML volumes. Recurrent vascular events within 1 year of TIA onset were assessed. The relationship between WMLs and recurrent risk of vascular events was determined by a multivariate logistic regression. Results: WMLs were identified in 104 patients (57.5%). Age and ratio of hypertension were significantly different between patients with and without WMLs. The incidence of vascular events in patients with WMLs significantly increased in comparison to those without WMLs (21.15% vs. 5.19%, 95% confidence interval [CI]: 1.18-[ 5.20, P = 0.027) after controlling for cont/~unders. Furthermore, distributions of WML loads were found to be different between patients who developed vascular events and those who did not. WML volumes were demonstrated to be correlated with recurrent risks, and the fourth quartile of WML volumes led to an 8.5-fold elevation of recurrent risk of vascular events compared with the first quartile (95% CI: 1.52-47.65, P = 0.015) alier adjusting for hyperlipidemia. Conclusion: WMLs occur frequently in patients with T1A and are associated wiila the high risk of recurrent vascular events, suggesting a predictive neuroimaging marker for TIA outcomes.展开更多
文摘Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.
文摘Background: White matter lesions (WMLs) are common findings in brain magnetic resonance imaging (MRI) and are strongly associated with stroke incidence, recurrence, and prognosis. However, the relationship between WMLs and transient ischemic attacks (TIAs) is not well established. This study aimed to determine the clinical significance of WMLs in patients with TIA. Methods: A total of 181 consecutive inpatients with first-ever TIA were enrolled. Brain MRls within 2 days of symptom onset were used to measure WML volumes. Recurrent vascular events within 1 year of TIA onset were assessed. The relationship between WMLs and recurrent risk of vascular events was determined by a multivariate logistic regression. Results: WMLs were identified in 104 patients (57.5%). Age and ratio of hypertension were significantly different between patients with and without WMLs. The incidence of vascular events in patients with WMLs significantly increased in comparison to those without WMLs (21.15% vs. 5.19%, 95% confidence interval [CI]: 1.18-[ 5.20, P = 0.027) after controlling for cont/~unders. Furthermore, distributions of WML loads were found to be different between patients who developed vascular events and those who did not. WML volumes were demonstrated to be correlated with recurrent risks, and the fourth quartile of WML volumes led to an 8.5-fold elevation of recurrent risk of vascular events compared with the first quartile (95% CI: 1.52-47.65, P = 0.015) alier adjusting for hyperlipidemia. Conclusion: WMLs occur frequently in patients with T1A and are associated wiila the high risk of recurrent vascular events, suggesting a predictive neuroimaging marker for TIA outcomes.