期刊文献+
共找到1,068篇文章
< 1 2 54 >
每页显示 20 50 100
Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake
1
作者 董军 卢宗贵 +8 位作者 张波 彭志涛 孙志红 夏彦文 元浩宇 唐军 朱德燕 刘华 吕嘉坤 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期60-62,共3页
Based on the frequency-to-time mapping relation of the linearly chirped pulse, the temporal phase shift induced by a laser-excited wake in a helium gas jet is measured using a chirped-pulse spectral interferometry wi... Based on the frequency-to-time mapping relation of the linearly chirped pulse, the temporal phase shift induced by a laser-excited wake in a helium gas jet is measured using a chirped-pulse spectral interferometry with ~ 140 fs resolution over a temporal region of I ps in a single shot. In this measurement, the image of the wake is obtained with one-dimensional spatial resolution and temporal resolution limited only by the bandwidth and chirp of the pulse. The 'bubbles' feature of the wake structure, along with multiple wakes excited by the main lobe and the side lobe of a laser focal-spot, is captured simultaneously. 展开更多
关键词 Single-Shot Measurement of transient phase Shift Induced by Laser Wake
下载PDF
Transient liquid phase bonding of DD5 superalloy using a designed interlayer: microstructure and mechanical properties 被引量:1
2
作者 周昌杰 范骁乐 +3 位作者 朱立华 陈闯 贺建超 计红军 《China Welding》 CAS 2024年第2期1-10,共10页
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen... Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa. 展开更多
关键词 Ni-based superalloy powder transient liquid phase bonded joint shear strength
下载PDF
Time-dependent effects in transient liquid phase bonding of 304L and Cp-Ti using an Ag-Cu interlayer
3
作者 Saeed VAZIRIAN Mohammad MOSHKBAR BAKHSHAYESH Ali FARZADI 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2237-2255,共19页
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ... One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints. 展开更多
关键词 diffusion brazing transient liquid phase bonding dissimilar material joints microstructural evolution mechanical properties grade 2 titanium
下载PDF
A two-step transient liquid phase diffusion bonding process of T91 steels 被引量:4
4
作者 Chen Sijie Tang Hengjuan Zhao Pifeng 《China Welding》 EI CAS 2017年第2期52-57,共6页
In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heatin... In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min. 展开更多
关键词 T91 transient liquid phase diffusion bonding two-step heating process scanning electron microscopy
下载PDF
Transient liquid phase bonding of Al 2024 to Ti-6Al-4V alloy using Cu-Zn interlayer 被引量:3
5
作者 Majid SAMAVATIAN Ayoub HALVAEE +1 位作者 Ahmad Ali AMADEH Alireza KHODABANDEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期770-775,共6页
Transient liquid phase bonding of two dissimilar alloys Al 2024 and Ti?6Al?4V using Cu?22%Zn interlayer was carried out at 510 °C under vacuum of 0.01 Pa for various bonding time. In order to characterize the mic... Transient liquid phase bonding of two dissimilar alloys Al 2024 and Ti?6Al?4V using Cu?22%Zn interlayer was carried out at 510 °C under vacuum of 0.01 Pa for various bonding time. In order to characterize the microstructure evolution in the joint zone, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were applied. The results show that joint formation is attributed to the solid-state diffusion of Cu and Zn into Ti?6Al?4V and Al 2024 alloys followed by eutectic formation and isothermal solidification along the Cu?Zn/Al 2024 interface. The hardness of the joints at the interface increases with an increase in bonding time which can be attributed to formation of intermetallic compounds such as Al2Cu, TiCu3, Al4.2Cu3.2Zn0.7, Al0.71Zn0.29, Ti2Cu, TiAl3 and TiZn16 in the joint zone. Moreover, shear strength of the joint reaches the highest value of 37 MPa at bonding time of 60 min. 展开更多
关键词 aluminum alloy transient liquid phase bonding HOMOGENIZATION diffusion intermetallic compound EUTECTIC
下载PDF
Features of microstructure and fracture in the transient liquid phase bonded aluminium-based metal matrix composite joints 被引量:3
6
作者 孙大谦 刘卫红 +2 位作者 吴建红 贾树盛 邱小明 《China Welding》 EI CAS 2002年第1期9-13,共5页
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ... Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond). 展开更多
关键词 aluminium based metal matrix composite transient liquid phase bonding MICROSTRUCTURE FRACTURE
下载PDF
Effect of gap size on microstructure of transient liquid phase bonded IN-738LC superalloy 被引量:4
7
作者 Vahid MALEKI Hamid OMIDVAR Mohammad-reza RAHIMIPOUR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期437-447,共11页
In order to investigate the microstructure evolution and gain complete isothermal solidification time, transient liquid phase (TLP) bonding of IN-738LC superalloy was carried out using powdered AMS 4777 as the fille... In order to investigate the microstructure evolution and gain complete isothermal solidification time, transient liquid phase (TLP) bonding of IN-738LC superalloy was carried out using powdered AMS 4777 as the filler metal. The influence of gap size and bonding time on the joints was investigated. For example, complete isothermal solidification time for 40μm gap size was obtained as 45 min. In the case of lack of completion of isothermal solidification step, the remained molten interlayer cooled in the bonding zone under non-equilibrium condition andγ–γ′ eutectic phase formed in that area. The relationship between gap size and holding time was not linear. With the increase in gap size, eutectic phase width became thicker. In the diffusion affected zone, a much larger amount of alloying elements were observed reaching a peak. These peaks might be due to the formation of boride or silicide intermetallic. With the increase in gap size, the time required for bonding will increase, so the alloying elements have more time for diffusion and distribution in farther areas. As a result, concentrations of alloying elements decreased slightly with the increase in the gap size. The present bi-phasic model did not properly predict the complete isothermal solidification time for IN-738LC-AMS 4777-IN-738LC TLP bonding system. 展开更多
关键词 IN-738LC superalloy transient liquid phase (TLP) bonding gap size complete isothermal solidification
下载PDF
Microstructural and mechanical properties assessment of transient liquid phase bonding of CoCuFeMnNi high entropy alloy 被引量:3
8
作者 Mohammad Ali KARIMI Morteza SHAMANIAN Mohammad Hossein ENAYATI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3063-3074,共12页
The transient liquid phase(TLP)bonding of CoCuFeMnNi high entropy alloy(HEA)was studied.The TLP bonding was performed using AWS BNi-2 interlayer at 1050℃ with the TLP bonding time of 20,60,180 and 240 min.The effect ... The transient liquid phase(TLP)bonding of CoCuFeMnNi high entropy alloy(HEA)was studied.The TLP bonding was performed using AWS BNi-2 interlayer at 1050℃ with the TLP bonding time of 20,60,180 and 240 min.The effect of bonding time on the joint microstructure was characterized by SEM and EDS.Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time.For samples bonded at 20,60 and 180 min,athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound.For all samples,theγsolid solution was formed in the isothermal solidification zone of the bonding zone.To evaluate the effect of TLP bonding time on mechanical properties of joints,the shear strength and micro-hardness of joints were measured.The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints.The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min,respectively. 展开更多
关键词 high entropy alloy CoCuFeMnNi alloy transient liquid phase bonding bonding time solid solution isothermal solidification MICROSTRUCTURE mechanical properties
下载PDF
Formation process, microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite joint 被引量:5
9
作者 孙大谦 刘卫红 +1 位作者 贾树盛 邱小明 《中国有色金属学会会刊:英文版》 CSCD 2004年第1期105-110,共6页
The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process... The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al 2Cu and MgAl 2O 4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al 2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al 2Cu brittle phase and promoting homogenization of joint. 展开更多
关键词 金属基复合材料 制备 显微结构 机械性能 钎焊 瞬间液相连接 TLP
下载PDF
Transient liquid phase bonding of TiC particulate reinforced magnesium metal matrix composite (TiC_p/AZ91D) 被引量:1
10
作者 谷晓燕 孙大千 刘力 《China Welding》 EI CAS 2007年第1期19-24,共6页
Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times fro... Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint. 展开更多
关键词 magnesium metal matrix composite transient liquid phase bonding INTERLAYER microstructure mechanical properties
下载PDF
Fatigue properties of temperature gradient transient liquid phase diffusion bonded Al7075-T6 alloy 被引量:1
11
作者 Seyyed Salman Seyyed AFGHAHI Aliakbar EKRAMI +1 位作者 Saeed FARAHANY Amirreza JAHANGIRI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1073-1079,共7页
Fatigue properties of Al7075-T6 alloy joined by temperature gradient transient liquid phase(TGTLP) diffusion bonding using liquid gallium interlayer was investigated. The fatigue specimen was jointed at 460 °C un... Fatigue properties of Al7075-T6 alloy joined by temperature gradient transient liquid phase(TGTLP) diffusion bonding using liquid gallium interlayer was investigated. The fatigue specimen was jointed at 460 °C under 10 MPa pressure for 10 min. The TLP bonded samples were homogenized at 465 °C for 2 h and then T6-heat treated. The fatigue life of Al7075-T6 alloy was determined as 107 cycles under 90 MPa while the fatigue life of TLP bonded sample under this stress amplitude was 1.2×106 cycles, which is about 10% of the total Al7075 alloy fatigue life. The fatigue fracture surfaces of Al7075 sample and TGTLP bonded sample were studied using scanning electron microscope to characterize the nucleation sites and crack growth stages in both samples. 展开更多
关键词 Al7075 alloy FATIGUE transient liquid phase GALLIUM
下载PDF
Microstructure - properties relationship of transient liquid phase diffusion bonded a third generation single crystal super alloy joint 被引量:3
12
作者 Lang Bo Chai Lu +1 位作者 Hou Jinbao Guo Delun 《China Welding》 EI CAS 2017年第1期54-59,共6页
Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was ... Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was carried out,for obtaining relationship between microstructure and mechanical properties of joint. The results showed that the joint contained bonding zone and base metal. The diffusion zone was obviously observed. When it was not finished for isothermal solidification process,the bonding zone would contain isothermal solidification zone and rapid solidification zone. Metallographic examination revealed that isothermal solidification zone was consisted of γ and γ' phase. Rapid solidification zone was consisted of two different structures,which were ternary eutectic of borides,γ and γ' phase developing at the edge of joint,binary eutectic of γ and γ' phase appearing in the portion of joint. When it was not enough for homogenization process under the condition of finishing isothermal solidification process,the bonding zone would contain isothermal solidification zone and borides at the interface. Under the conditions of relatively high welding temperature and long welding time,average tensile strength of joint was equivalent to that of parent material. 展开更多
关键词 single crystal SUPERALLOY transient liquid phase diffusion BONDING MICROSTRUCTURE
下载PDF
Partial transient-liquid-phase bonding of TiC cermet to stainless steel using impulse pressuring with Ti/Cu/Nb interlayer 被引量:1
13
作者 黄利 盛光敏 +2 位作者 李佳 黄光杰 袁新建 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1025-1032,共8页
Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate ... Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate the detrimental effect of interfacial reaction products on the bonding strength. Successful bonding was achieved at 885℃ under a pulsed pressure of 2-10 MPa within durations in the range of 2-8 min, which was notably shortened in comparison with conventional PTLP bonding. Microstructure characterization revealed the o- phase with a limit solubility of Nb, a sequence of Ti-Cu intermetallic phases and solid solutions of Ni and Cu in α+β Ti in the reaction zone. The maximum shear strength of 106.7 MPa was obtained when the joint was bonded for 5 rain, indicating that a robust metallurgical bonding was achieved. Upon shear loading, the joints fractured along the Ti-Cu intermetallics interface and spread to the interior of TiC cermet in a brittle cleavage manner. 展开更多
关键词 TiC cermet transient liquid phase impulse pressuring mechanical property fracture
下载PDF
Interfacial reactions and diffusion path in partial transient liquid-phase bonding of Si_3N_4/Ti/Ni/Ti/Si_3N_4 被引量:1
14
作者 陈铮 赵其章 +3 位作者 方芳 楼宏青 睦润舟 李志章 《中国有色金属学会会刊:英文版》 CSCD 1999年第4期831-837,共7页
The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and... The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD). It was shown that the interfacial structure of Si3N4/TiN/Ti5Si3+Ti5Si4 + Ni3Si/ (NiTi ) /Ni3Ti/ Ni was formed after bonding. The activation energies for TiN layer and the mixed reaction layer of Ti5Si3 + Ti5Si4 + Ni3Si are 546. 8 kJ/mol and 543. 9 kJ/mol, respectively. The formation and transition processes of interface layer sequence in the joint were clarified by diffusion path. An important characteristic, which is different from the conventional brazing and soid-state diffusion bonding, has been found, i. e., during the partial transient liquid-phase bonding, not only the reaction layers which have formed grow, but also the diffusion path in the subsequent reaction changes because of the remarkable variation of the concentration on the metal side. 展开更多
关键词 CERAMIC joining transient LIQUID-phase BONDING INTERFACIAL REACTIONS diffusion
下载PDF
Bonding of Al_2O_3 ceramic and Nb using transient liquid phase brazing 被引量:1
15
作者 于治水 梁超 +2 位作者 李瑞峰 吴铭方 祁凯 《中国有色金属学会会刊:英文版》 CSCD 2004年第1期99-104,共6页
The brazing of Al 2O 3 to Nb was achieved by the method of transient liquid phase (TLP) bonding. Ti foil and Ni 5V alloy foil were used as interlayers for the bonding. The base materials were brazed at 1 4231 573 K fo... The brazing of Al 2O 3 to Nb was achieved by the method of transient liquid phase (TLP) bonding. Ti foil and Ni 5V alloy foil were used as interlayers for the bonding. The base materials were brazed at 1 4231 573 K for 1120 min. The results show that the shear strength of the joint first increases and then decreases with increasing holding time and brazing temperature. The joint interface microstructure and elements distribution were investigated. It can be concluded that a composite structure, in which the base metals are solid solution Nb(V) and Nb(Ti) reinforced by Ni 2Ti, is formed when the brazing temperature is 1 473 K and holding time 15 min, and a satisfactory joint strength can be achieved. The interaction of Ti foil and Ni 5V foil leads to the formation of liquid eutectic phase with low melting point, at the same time the combination of Ti come from the interlayer with O atoms from Al 2O 3 results in the bonding of Al 2O 3 and Nb. 展开更多
关键词 氧化铝陶瓷 陶瓷/金属连接 钎焊 瞬间液相连接 TLP
下载PDF
Interface evolution of TiAl/Ti6242 transient liquid phase joint using Ti, Cu foils as insert metals 被引量:1
16
作者 段辉平 K.H.Bohm +1 位作者 V.Ventzke M.Koak 《中国有色金属学会会刊:英文版》 CSCD 2005年第2期375-378,共4页
The interface evolution of TiAl/Ti6242 joint produced by transient liquid phase(TLP) bonding with Ti, Cu foils as insert metals was investigated. The results show that the surface oxide layer on TiAl plays a very impo... The interface evolution of TiAl/Ti6242 joint produced by transient liquid phase(TLP) bonding with Ti, Cu foils as insert metals was investigated. The results show that the surface oxide layer on TiAl plays a very important role in the formation process of the joint. A ‘bridge’ effect is observed because of the presence of the oxide layer on the surface of TiAl. The diffusion behavior of Cu atoms in TiAl is strongly controlled by the vacancies beneath the surface of TiAl. Based on the interface diffusion and interface wettability, a mechanism for the effect of bonding pressure, bonding temperature, holding time and stacking sequence of the insert foils on the joint formation process were proposed. 展开更多
关键词 铝钛合金 瞬态液相压焊 表面蒸气 机械性能
下载PDF
Improvement of Joint Strength of SiCp/Al Metal Matrix Composite in Transient Liquid Phase Bonding Using Cu/Ni/Cu Film Interlayer 被引量:1
17
作者 Rongfa CHEN Dunwen ZUO Min WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期291-294,共4页
The compact oxide on the surface of SiCp/Al metal matrix composite (SiCp/Al MMC) greatly depends on the property of the joint. Inlaid sputtering target was applied to etch the oxide completely on the bonding surface... The compact oxide on the surface of SiCp/Al metal matrix composite (SiCp/Al MMC) greatly depends on the property of the joint. Inlaid sputtering target was applied to etch the oxide completely on the bonding surface of SiCp/Al MMC by plasma erosion. Cu/Ni/Cu film of 5μm in thickness was prepared by magnetron sputtering method on the clean bonding surface in the same vacuum chamber, which was acted as an interlayer in transient liquid phase (TLP) bonding process. Compared with the same thickness of single Cu foil and Ni foil interlayer, the shear strength of 200 MPa was obtained using Cu/Ni/Cu film interlayer during TLP bonding, which was 89.7% that of base metal. In addition, homogenization of the bonding region and no particle segregation in interfacial region were found by analysis of the joint microstructure. Scanning electron microscopy (SEM) was used to observe the micrograph of the joint interface. The result shows that a homogenous microstructure of joint was achieved, which is similar with that of based metal. 展开更多
关键词 SiCp/Al MMC Magnetron sputtering Cu/Ni/Cu film transient liquid-phase(TLP) bonding
下载PDF
Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams 被引量:1
18
作者 J.Shiri F.Shahi +1 位作者 M.R.Mehmannavaz L.Shahrassai 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期29-33,共5页
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt... We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation. 展开更多
关键词 phase Control of transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams QDs
下载PDF
Interfacial Microstructure and Properties of Ti(C, N)/Ni Bonded by Transient Liquid-phase Diffusion
19
作者 周世权 熊惟皓 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期432-439,共8页
Effects of the main process parameters(temperature and time) on microstructure and properties of Ti(C, N)/Ni interface bonded by (Cu+Nb) interlayer in a vacuum diffusion bonding device were investigated. The in... Effects of the main process parameters(temperature and time) on microstructure and properties of Ti(C, N)/Ni interface bonded by (Cu+Nb) interlayer in a vacuum diffusion bonding device were investigated. The interfacial microstructures consisted initially of Ni3Nb metallic compound and eutectic of Ni3Nb + CuNiss, and finally transformed to (Ti, Nb) (C, N)+Ni3Nb near Ti (C, N) and NiCuss + Ni3Nb near Ni when diffusion bonding temperature was 1 523-1 573 K. It was clear that Cu was a constituent in the transient liquid phase (TLP) into which Ni was dissolved by forming Cu-Ni transition liquid. Nb was dissolved in Cu-Ni transition liquid rapidly. Ti (C, N) conld be wetted by resultant Ni-Nb-Cu transient liquid phase which was followed by a little (Ti, Nb) (C, N) solid solution formed at interface. This increased the interface combining capability. Ultimately the interface shear strength was able to reach 140 MPa. The theoretle analysis and experimental results show that the growth of interfacial reaction layer Ni3Nb accords with parabola law, and the activation energy of diffusion reaction is 115.0±0.5 kJ/mol, while the diffusion reaction speed constant is 12.53 mm/s^1/2. 展开更多
关键词 vacuum diffusion bonding transient liquid phase (TLP) diffusion bonding interlayer activation energy
下载PDF
Dynamic study in partial transient liquid phase bonding of Si_3N_4
20
作者 邹家生 初雅杰 +1 位作者 许志荣 陈光 《China Welding》 EI CAS 2004年第2期101-105,共5页
Dynamics in partial transient liquid phase bonding (PTLP bonding) of Si_3N_4 ceramic with Ti/Cu/Ti multi-interlayer was systematically studied through micro-analysis of joint interfaces. The results show that growth o... Dynamics in partial transient liquid phase bonding (PTLP bonding) of Si_3N_4 ceramic with Ti/Cu/Ti multi-interlayer was systematically studied through micro-analysis of joint interfaces. The results show that growth of reaction layer and isothermal solidification procession do at the same time. Growth of reaction layer and moving of isothermal solidification interface obey the parabolic law governed by the diffusion of participating elements during the PTLP bonding. Coordination of the above two dynamics process is done through time and temperature. When reaction layer thickness is suitable and isothermal solidification process is finished, the high bonding strength at room temperature and high temperature are obtained. 展开更多
关键词 partial transient liquid phase bonding silicon nitride ceramic isothermal solidification reaction layer KINETICS
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部