Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.Transient receptor potential(TRP)channels,which constitute a vast ion chann...Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.Transient receptor potential(TRP)channels,which constitute a vast ion channel family,play pivotal roles in sensing the external environment and maintaining internal homeostasis in insects.TRP channels have been widely investigated for their critical roles in regulating various insect behaviors in recent years.In this study,we identified 15 TRP gene loci encoding 26 transcripts in the genome of S.frugiperda and analyzed their expression profiles at different developmental stages.The results revealed that S.frugiperda possesses four TRPC genes,six TRPA genes,one TRPM gene,two TRPV genes,one TRPN gene,and one TRPML gene,while a canonical TRPP is absent.Moreover,the SfruTRPA1 was functionally characterized using the Xenopus oocyte expression system.The results showed that SfruTRPA1 is activated by temperature increases from 20 to 45℃,and there is no significant desensitization after repeated stimuli within the same temperature range.Additionally,SfruTRPA1 is activated by certain natural chemicals,including allyl isothiocyanate(AITC)and cinnamaldehyde(CA).These findings provide valuable insights to the TRP genes in S.frugiperda.展开更多
The study titled“Transient receptor potential-related risk model predicts prognosis of hepatocellular carcinoma patients”is a significant contribution to hepatocellular carcinoma(HCC)research,highlighting the role o...The study titled“Transient receptor potential-related risk model predicts prognosis of hepatocellular carcinoma patients”is a significant contribution to hepatocellular carcinoma(HCC)research,highlighting the role of transient receptor potential(TRP)family genes in the disease’s progression and prognosis.Utilizing data from The Cancer Genome Atlas database,it establishes a new risk assessment model,emphasizing the interaction of TRP genes with tumor proliferation pathways,key metabolic reactions like retinol metabolism,and the tumor immune microenvironment.Notably,the overexpression of the TRPC1 gene in HCC correlates with poorer patient survival outcomes,suggesting its potential as a prognostic biomarker and a target for personalized therapy,particularly in strategies combining immunotherapy and anti-TRP agents.展开更多
Transient receptor potential channel A1 is one of the important transducers of noxious stimuli in the primary afferents, which may contribute to generation of neurogenic inflammation and hyperalgesia. The present stud...Transient receptor potential channel A1 is one of the important transducers of noxious stimuli in the primary afferents, which may contribute to generation of neurogenic inflammation and hyperalgesia. The present study was designed to investigate if activation of transient receptor potential channel A1 may induce calcitonin gene-related peptide release from the primary afferent neurons. We found that application of allyl isothiocyanate, a transient receptor potential channel A1 activator, caused calcitonin gene-related peptide release from the cultured rat dorsal root ganglion neurons. Knock- down of transient receptor potential channel A1 with an antisense oligodeoxynucleotide prevented calcitonin gene-related peptide release by allyl isothiocyanate application in cultured dorsal root ganglion neurons. Thus, we concluded that transient receptor potential channel A1 activation caused calcitonin gene-related peptide release in sensory neurons.展开更多
The transient receptor potential cation channel subfamily V member 1(TRPV1) provides the sensation of pain(nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whe...The transient receptor potential cation channel subfamily V member 1(TRPV1) provides the sensation of pain(nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517(300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve.展开更多
BACKGROUND Transient receptor potential vanilloid-1(TRPV1),a nonselective cation channel,is activated by capsaicin,a pungent ingredient of hot pepper.Previous studies have suggested a link between obesity and capsaici...BACKGROUND Transient receptor potential vanilloid-1(TRPV1),a nonselective cation channel,is activated by capsaicin,a pungent ingredient of hot pepper.Previous studies have suggested a link between obesity and capsaicin-associated pathways,and activation of TRPV1 may provide an alternative approach for obesity treatment.However,data on the TRPV1 distribution in human gastric mucosa are limited,and the degree of TRPV1 distribution in the gastric and duodenal mucosal cells of obese people in comparison with normal-weight individuals is unknown.AIM To clarify gastric and duodenal mucosal expression of TRPV1 in humans and compare TRPV1 expression in obese and healthy individuals.METHODS Forty-six patients with a body mass index(BMI)of>40 kg/m^(2) and 20 patients with a BMI between 18-25 kg/m^(2) were included.Simultaneous biopsies from the fundus,antrum,and duodenum tissues were obtained from subjects between the ages of 18 and 65 who underwent esophagogastroduodenoscopy.Age,sex,history of alcohol and cigarette consumption,and past medical history regarding chronic diseases and medications were accessed from patient charts and were analyzed accordingly.Evaluation with anti-TRPV1 antibody was performed separately according to cell types in the fundus,antrum,and duodenum tissues using an immunoreactivity score.Data were analyzed using SPSS 17.0.RESULTS TRPV1 expression was higher in the stomach than in the duodenum and was predominantly found in parietal and chief cells of the fundus and mucous and foveolar cells of the antrum.Unlike foveolar cells in the antrum,TRPV1 was relatively low in foveolar cells in the fundus(4.92±0.49 vs 0.48±0.16,P<0.01,Mann-Whitney U test).Additionally,the mucous cells in the duodenum also had low levels of TRPV1 compared to mucous cells in the antrum(1.33±0.31 vs 2.95±0.46,P<0.01,Mann-Whitney U test).TRPV1 expression levels of different cell types in the fundus,antrum,and duodenum tissues of the morbidly obese group were similar to those of the control group.Staining with TRPV1 in fundus chief cells and antrum and duodenum mucous cells was higher in patients aged≥45 years than in patients<45 years(3.03±0.42,4.37±0.76,2.28±0.55 vs 1.9±0.46,1.58±0.44,0.37±0.18,P=0.03,P<0.01,P<0.01,respectively,Mann-Whitney U test).The mean staining levels of TRPV1 in duodenal mucous cells in patients with diabetes and hypertension were higher than those in patients without diabetes and hypertension(diabetes:2.11±0.67 vs 1.02±0.34,P=0.04;hypertension:2.42±0.75 vs 1.02±0.33,P<0.01 Mann-Whitney U test).CONCLUSION The expression of TRPV1 is unchanged in the gastroduodenal mucosa of morbidly obese patients demonstrating that drugs targeting TRPV1 may be effective in these patients.展开更多
Background: It is important to maintain skin homeostasis for cosmetic and medical reasons. Many ceramide-related ingredients and cosmetics have been developed to improve the skin barrier function and skin hydration. S...Background: It is important to maintain skin homeostasis for cosmetic and medical reasons. Many ceramide-related ingredients and cosmetics have been developed to improve the skin barrier function and skin hydration. Similar to extracellular lipids, the cornified envelope, which is a structure formed beneath the plasma membrane, contributes to the skin barrier function as a scaffold for extracellular lipids. Therefore, in this study, we focused on transglutaminase 1 (TGM1) which is the key enzyme for formation of the cornified envelope Objective: The objectives of this study were to identify compounds that could upregulate the expression of TGM1 and evaluate their underlying action mechanisms. Methods: Expression of the transient receptor potential channel vanilloid subfamily member 4 (TRPV4) at the mRNA and protein levels was estimated by PCR and western blotting. Effects of baicalein and Salvia officinalis (SO) extract on TGM1 mRNA expression were measured by PCR. The involvement of TRPV4 in TGM1 mRNA expression was evaluated by the inhibition and silencing of TRPV4. Results: TRPV4 was expressed in both basal cell-like HaCaT cells and suprabasal cell-like HaCaT cells. Baicalein and SO extract upregulated TGM1 mRNA expression in basal cell-like HaCaT cells. However, inhibition and silencing of TRPV4 abrogated the effects of baicalein and SO extract. Conclusion: Baicalein and SO extract upregulated the expression of TGM1 mRNA via the activation of TRPV4, suggesting that it may improve the skin barrier function by enhancing cornified envelope formation.展开更多
AIM: To explore the possibility of using the Noninvasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca^2+ influxes in HL-7702 cells, a no...AIM: To explore the possibility of using the Noninvasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca^2+ influxes in HL-7702 cells, a normal human liver cell line.METHODS: Net Ca^2+ fluxes were measured with NMT, a technology that can obtain dynamic information of specific/selective ionic/molecular activities on material surfaces, non-invasively. The expression levels of TRPCl were increased by liposomal transfection, whose effectiveness was evaluated by Western-blotting and single cell reverse transcription-polymerase chain reaction.RESULTS: Ca^2+ influxes could be elicited by adding 1 mmol/L CaCl2 to the test solution of HL-7702 cells. They were enhanced by addition of 20 μmol/L noradrenalin and inhibited by 100 μmol/L LaCl3 (a non-selective Ca^2+ channel blocker); 5 μmol/L nifedipine did not induce any change. Overexpression of TRPCl caused increased Ca^2+ influx. Five micromoles per liter nifedipine did not inhibit this elevation, whereas 100 μmol/L LaCI3 did.CONCLUSION: In HL-7702 cells, there is a type of TRPCl-dependent Ca^2+ channel, which could be detected v/a NMT and inhibited by La^3+.展开更多
OBJECTIVE We want to investigate the mechanism of organophosphate-induced delayed neuropathy(OPIDN) and find appropriate therapeutic medicine.OPIDN,often leads to paresthesias,ataxia and paralysis,occurs in the late-s...OBJECTIVE We want to investigate the mechanism of organophosphate-induced delayed neuropathy(OPIDN) and find appropriate therapeutic medicine.OPIDN,often leads to paresthesias,ataxia and paralysis,occurs in the late-stage of acute poisoning or after repeated exposures to organophosphate(OP) insecticides or nerve agents,and may contribute to the Gulf War Syndrome.METHODS FDSS Ca2^(+)-influx assays,single-cell calcium imaging and patch-clamp electrophysiology were the major testing techniques.Transfected HEK293 cells and dorsal root ganglion(DRG) neurons were used to evaluate the effects of compounds.Wild type and trpa1 knockout mice and adult hyline brown hens were used to evaluate the neuropathological damages caused by the OPs.Transmission electron microscopy imaging was used to observe the nerve injuries ultrastructurally.High-throughput screen for TRPA1 inhibitors was accomplished by Ion Works Barracuda(IWB) automated electrophysiology assay.RESULTS TRPA1(Transient receptor potential cation channel,member A1) channel mediates OPIDN.A variety of OPs,exemplified by malathion,activates TRPA1 but not other neuronal TRP channels.Malathion increases the intracellular calcium levels and upregulates the excitability of mouse DRG neurons in vitro.Mice with repeated exposures to malathion also develop local tissue nerve injuries and pain-related behaviors,which resembles the early symptoms of OPIDN.Both the neuropathological changes and the nocifensive behaviors can be attenuated by treatment of TRPA1 antagonist HC030031 or abolished by knockout of Trpa1 gene.In the classic hens OPIDN model,malathion causes nerve injuries and ataxia to a similar level as the positive inducer tri-ortho-cresyl phosphate(TOCP),which also activates TRPA1 channel.Treatment with HC030031 reduces the damages caused by malathion or TOCP.Duloxetine and Ketotifen,two commercially available drugs exhibiting TRPA1 inhibitory activity,show neuroprotective effects against OPIDN and might be used in emergency situations.CONCLUSION TRPA1 is the major mediator of OPIDN and targeting TRPA1 is an effective way for the treatment of OPIDN.展开更多
基金funded by the Shenzhen Science and Technology Program,China(KQTD20180411143628272)the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District,China(pt202101-02)the National Key R&D Program of China(2022YFE0116500).
文摘Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.Transient receptor potential(TRP)channels,which constitute a vast ion channel family,play pivotal roles in sensing the external environment and maintaining internal homeostasis in insects.TRP channels have been widely investigated for their critical roles in regulating various insect behaviors in recent years.In this study,we identified 15 TRP gene loci encoding 26 transcripts in the genome of S.frugiperda and analyzed their expression profiles at different developmental stages.The results revealed that S.frugiperda possesses four TRPC genes,six TRPA genes,one TRPM gene,two TRPV genes,one TRPN gene,and one TRPML gene,while a canonical TRPP is absent.Moreover,the SfruTRPA1 was functionally characterized using the Xenopus oocyte expression system.The results showed that SfruTRPA1 is activated by temperature increases from 20 to 45℃,and there is no significant desensitization after repeated stimuli within the same temperature range.Additionally,SfruTRPA1 is activated by certain natural chemicals,including allyl isothiocyanate(AITC)and cinnamaldehyde(CA).These findings provide valuable insights to the TRP genes in S.frugiperda.
文摘The study titled“Transient receptor potential-related risk model predicts prognosis of hepatocellular carcinoma patients”is a significant contribution to hepatocellular carcinoma(HCC)research,highlighting the role of transient receptor potential(TRP)family genes in the disease’s progression and prognosis.Utilizing data from The Cancer Genome Atlas database,it establishes a new risk assessment model,emphasizing the interaction of TRP genes with tumor proliferation pathways,key metabolic reactions like retinol metabolism,and the tumor immune microenvironment.Notably,the overexpression of the TRPC1 gene in HCC correlates with poorer patient survival outcomes,suggesting its potential as a prognostic biomarker and a target for personalized therapy,particularly in strategies combining immunotherapy and anti-TRP agents.
基金supported by the Research Basis Formation Supporting Project for Private University
文摘Transient receptor potential channel A1 is one of the important transducers of noxious stimuli in the primary afferents, which may contribute to generation of neurogenic inflammation and hyperalgesia. The present study was designed to investigate if activation of transient receptor potential channel A1 may induce calcitonin gene-related peptide release from the primary afferent neurons. We found that application of allyl isothiocyanate, a transient receptor potential channel A1 activator, caused calcitonin gene-related peptide release from the cultured rat dorsal root ganglion neurons. Knock- down of transient receptor potential channel A1 with an antisense oligodeoxynucleotide prevented calcitonin gene-related peptide release by allyl isothiocyanate application in cultured dorsal root ganglion neurons. Thus, we concluded that transient receptor potential channel A1 activation caused calcitonin gene-related peptide release in sensory neurons.
基金supported by the National Natural Science Foundation of China,No.81171178the Natural Science Foundation of Shanxi Province in China,No.2012011036-3Scientific Research Foundation of Shanxi Province of China for the Returned Overseas Chinese Scholars,No.2013011054-2
文摘The transient receptor potential cation channel subfamily V member 1(TRPV1) provides the sensation of pain(nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517(300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve.
文摘BACKGROUND Transient receptor potential vanilloid-1(TRPV1),a nonselective cation channel,is activated by capsaicin,a pungent ingredient of hot pepper.Previous studies have suggested a link between obesity and capsaicin-associated pathways,and activation of TRPV1 may provide an alternative approach for obesity treatment.However,data on the TRPV1 distribution in human gastric mucosa are limited,and the degree of TRPV1 distribution in the gastric and duodenal mucosal cells of obese people in comparison with normal-weight individuals is unknown.AIM To clarify gastric and duodenal mucosal expression of TRPV1 in humans and compare TRPV1 expression in obese and healthy individuals.METHODS Forty-six patients with a body mass index(BMI)of>40 kg/m^(2) and 20 patients with a BMI between 18-25 kg/m^(2) were included.Simultaneous biopsies from the fundus,antrum,and duodenum tissues were obtained from subjects between the ages of 18 and 65 who underwent esophagogastroduodenoscopy.Age,sex,history of alcohol and cigarette consumption,and past medical history regarding chronic diseases and medications were accessed from patient charts and were analyzed accordingly.Evaluation with anti-TRPV1 antibody was performed separately according to cell types in the fundus,antrum,and duodenum tissues using an immunoreactivity score.Data were analyzed using SPSS 17.0.RESULTS TRPV1 expression was higher in the stomach than in the duodenum and was predominantly found in parietal and chief cells of the fundus and mucous and foveolar cells of the antrum.Unlike foveolar cells in the antrum,TRPV1 was relatively low in foveolar cells in the fundus(4.92±0.49 vs 0.48±0.16,P<0.01,Mann-Whitney U test).Additionally,the mucous cells in the duodenum also had low levels of TRPV1 compared to mucous cells in the antrum(1.33±0.31 vs 2.95±0.46,P<0.01,Mann-Whitney U test).TRPV1 expression levels of different cell types in the fundus,antrum,and duodenum tissues of the morbidly obese group were similar to those of the control group.Staining with TRPV1 in fundus chief cells and antrum and duodenum mucous cells was higher in patients aged≥45 years than in patients<45 years(3.03±0.42,4.37±0.76,2.28±0.55 vs 1.9±0.46,1.58±0.44,0.37±0.18,P=0.03,P<0.01,P<0.01,respectively,Mann-Whitney U test).The mean staining levels of TRPV1 in duodenal mucous cells in patients with diabetes and hypertension were higher than those in patients without diabetes and hypertension(diabetes:2.11±0.67 vs 1.02±0.34,P=0.04;hypertension:2.42±0.75 vs 1.02±0.33,P<0.01 Mann-Whitney U test).CONCLUSION The expression of TRPV1 is unchanged in the gastroduodenal mucosa of morbidly obese patients demonstrating that drugs targeting TRPV1 may be effective in these patients.
文摘Background: It is important to maintain skin homeostasis for cosmetic and medical reasons. Many ceramide-related ingredients and cosmetics have been developed to improve the skin barrier function and skin hydration. Similar to extracellular lipids, the cornified envelope, which is a structure formed beneath the plasma membrane, contributes to the skin barrier function as a scaffold for extracellular lipids. Therefore, in this study, we focused on transglutaminase 1 (TGM1) which is the key enzyme for formation of the cornified envelope Objective: The objectives of this study were to identify compounds that could upregulate the expression of TGM1 and evaluate their underlying action mechanisms. Methods: Expression of the transient receptor potential channel vanilloid subfamily member 4 (TRPV4) at the mRNA and protein levels was estimated by PCR and western blotting. Effects of baicalein and Salvia officinalis (SO) extract on TGM1 mRNA expression were measured by PCR. The involvement of TRPV4 in TGM1 mRNA expression was evaluated by the inhibition and silencing of TRPV4. Results: TRPV4 was expressed in both basal cell-like HaCaT cells and suprabasal cell-like HaCaT cells. Baicalein and SO extract upregulated TGM1 mRNA expression in basal cell-like HaCaT cells. However, inhibition and silencing of TRPV4 abrogated the effects of baicalein and SO extract. Conclusion: Baicalein and SO extract upregulated the expression of TGM1 mRNA via the activation of TRPV4, suggesting that it may improve the skin barrier function by enhancing cornified envelope formation.
基金Supported by The National Natural Science Foundation of China,No.30270532 and No.30670774Tsinghua-Yue-Yuen Medical Science Foundation,No.20240000531 and No.20240000547
文摘AIM: To explore the possibility of using the Noninvasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca^2+ influxes in HL-7702 cells, a normal human liver cell line.METHODS: Net Ca^2+ fluxes were measured with NMT, a technology that can obtain dynamic information of specific/selective ionic/molecular activities on material surfaces, non-invasively. The expression levels of TRPCl were increased by liposomal transfection, whose effectiveness was evaluated by Western-blotting and single cell reverse transcription-polymerase chain reaction.RESULTS: Ca^2+ influxes could be elicited by adding 1 mmol/L CaCl2 to the test solution of HL-7702 cells. They were enhanced by addition of 20 μmol/L noradrenalin and inhibited by 100 μmol/L LaCl3 (a non-selective Ca^2+ channel blocker); 5 μmol/L nifedipine did not induce any change. Overexpression of TRPCl caused increased Ca^2+ influx. Five micromoles per liter nifedipine did not inhibit this elevation, whereas 100 μmol/L LaCI3 did.CONCLUSION: In HL-7702 cells, there is a type of TRPCl-dependent Ca^2+ channel, which could be detected v/a NMT and inhibited by La^3+.
基金supported by National Key Scientific Instrument&Equipment Development Program of China(2012YQ03026010)the Joint NSFC-ISF Research Program(8146114802)+2 种基金jointly funded by the National Natural Science Foundation of China and the Israel Science Foundationthe State Key Program of Basic Research of China(2013CB910604)the National Natural Science Foundation of China(61327014 and 61175103)
文摘OBJECTIVE We want to investigate the mechanism of organophosphate-induced delayed neuropathy(OPIDN) and find appropriate therapeutic medicine.OPIDN,often leads to paresthesias,ataxia and paralysis,occurs in the late-stage of acute poisoning or after repeated exposures to organophosphate(OP) insecticides or nerve agents,and may contribute to the Gulf War Syndrome.METHODS FDSS Ca2^(+)-influx assays,single-cell calcium imaging and patch-clamp electrophysiology were the major testing techniques.Transfected HEK293 cells and dorsal root ganglion(DRG) neurons were used to evaluate the effects of compounds.Wild type and trpa1 knockout mice and adult hyline brown hens were used to evaluate the neuropathological damages caused by the OPs.Transmission electron microscopy imaging was used to observe the nerve injuries ultrastructurally.High-throughput screen for TRPA1 inhibitors was accomplished by Ion Works Barracuda(IWB) automated electrophysiology assay.RESULTS TRPA1(Transient receptor potential cation channel,member A1) channel mediates OPIDN.A variety of OPs,exemplified by malathion,activates TRPA1 but not other neuronal TRP channels.Malathion increases the intracellular calcium levels and upregulates the excitability of mouse DRG neurons in vitro.Mice with repeated exposures to malathion also develop local tissue nerve injuries and pain-related behaviors,which resembles the early symptoms of OPIDN.Both the neuropathological changes and the nocifensive behaviors can be attenuated by treatment of TRPA1 antagonist HC030031 or abolished by knockout of Trpa1 gene.In the classic hens OPIDN model,malathion causes nerve injuries and ataxia to a similar level as the positive inducer tri-ortho-cresyl phosphate(TOCP),which also activates TRPA1 channel.Treatment with HC030031 reduces the damages caused by malathion or TOCP.Duloxetine and Ketotifen,two commercially available drugs exhibiting TRPA1 inhibitory activity,show neuroprotective effects against OPIDN and might be used in emergency situations.CONCLUSION TRPA1 is the major mediator of OPIDN and targeting TRPA1 is an effective way for the treatment of OPIDN.