This work focuses on the fabrication and characterization of Chemical Field-Effect Transistor(ChemFET)gas nanosensor arrays based on single nanowire(SNW).The fabrication processes include micro and nanofabrication tec...This work focuses on the fabrication and characterization of Chemical Field-Effect Transistor(ChemFET)gas nanosensor arrays based on single nanowire(SNW).The fabrication processes include micro and nanofabrication techniques enabled by a combination of ultraviolet(UV)and e-beam lithography to build the ChemFET structure.Results show the integration and connection of SNWs across the multiple pairs of nanoelectrodes in the ChemFET by dielectrophoresis process(DEP)thanks to the incorporation of alignment windows(200-300 nm)adapted to the diameter of the NWs.Measurements of the SNW ChemFET array's output and transfer characteristics prove the influence of gate bias on the drain current regulation.Tests upon hydrogen(H_(2))and nitrogen dioxide(NO_(2))as analyte models of reducing and oxidizing gases show the ChemFET sensing functionality.Moreover,results demonstrate better response characteristics to H_(2)when the ChemFET operates in the subthreshold regime.The design concepts and methods proposed for fabricating the SNW-based ChemFET arrays are versatile,reproducible,and most likely adaptable to other systems where SNW arrays are required.展开更多
We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-flee arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sw...We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-flee arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances makes this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis.展开更多
基金This work was supported by the Czech Science Foundation(GAČR,No.22-14886S)the MCIN/AEI/10.13039/501100011033(No.PID2019-107697RBC42(ERDF A way of making Europe)).
文摘This work focuses on the fabrication and characterization of Chemical Field-Effect Transistor(ChemFET)gas nanosensor arrays based on single nanowire(SNW).The fabrication processes include micro and nanofabrication techniques enabled by a combination of ultraviolet(UV)and e-beam lithography to build the ChemFET structure.Results show the integration and connection of SNWs across the multiple pairs of nanoelectrodes in the ChemFET by dielectrophoresis process(DEP)thanks to the incorporation of alignment windows(200-300 nm)adapted to the diameter of the NWs.Measurements of the SNW ChemFET array's output and transfer characteristics prove the influence of gate bias on the drain current regulation.Tests upon hydrogen(H_(2))and nitrogen dioxide(NO_(2))as analyte models of reducing and oxidizing gases show the ChemFET sensing functionality.Moreover,results demonstrate better response characteristics to H_(2)when the ChemFET operates in the subthreshold regime.The design concepts and methods proposed for fabricating the SNW-based ChemFET arrays are versatile,reproducible,and most likely adaptable to other systems where SNW arrays are required.
文摘We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-flee arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances makes this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis.