In this paper,combined with the relevant speed theory and characteristics of the law,the current highway speed transition design problems are studied and analyzed.In the process of specific analysis,mainly combined wi...In this paper,combined with the relevant speed theory and characteristics of the law,the current highway speed transition design problems are studied and analyzed.In the process of specific analysis,mainly combined with the characteristics of different types of highway speed changes and road section design requirements,this paper studies and analyzes the design methods of different types of highway speed transition section.And on this basis,according to the design principles and requirements of highway operation speed transition section,the paper summarizes the matters needing attention in the design of highway operation speed transition section,in order to provide certain reference value for relevant personnel.展开更多
Public transit planning is a user-oriented problem, respectful of financial issues and involves different stakeholders such as the general public, the transportation provider and the local government. One of the main ...Public transit planning is a user-oriented problem, respectful of financial issues and involves different stakeholders such as the general public, the transportation provider and the local government. One of the main components of public transit planning is the transit network design (TND) problem. This research is an attempt to perform transit network design and analysis in the city of Sanandaj, Iran using the capabilities of GIS and Honeybee algorithm. Objectives of this study are formulating a multi-objective model of the TND problem, developing a GIS-based procedure for solving the TND problem and examination of the solutions using artificial metaheuristic methods such as honeybee algorithm. The transit network design approach in this research, aims to reduce the walking distance, the total travel distance and the total number of stops needed for a suitable transit service in Sanandaj, Iran. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modelling functionalities and using the abilities of the artificial intelligence in modelling and assessment of the transit network.展开更多
The public transit system in Sanandaj has been under review and modification for the last several years. The goal is to reduce the traffic congestion and the share of private car usage in the city and increase the ver...The public transit system in Sanandaj has been under review and modification for the last several years. The goal is to reduce the traffic congestion and the share of private car usage in the city and increase the very low share of the public transit. The bus routes in Sanandaj are not connected. There is no connected transit network with the ability to transfer between the routes in locations outside of the downtown terminal. The routes mostly connect the downtown core directly to the peripheries without providing travel options for passengers between peripheries. Although there has been some improvement in the transit system, lack of service in many populated districts of Sanandaj and town nearby makes the transit system unpopular and unreliable. This research is an attempt to provide solutions for the transit network design (TND) problem in Sanandaj using the capabilities of GIS and artificial intelligence methods. GIS offers several tools that enable the decision-makers to investigate the spatial correlations between different features. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modeling functionalities. The visual ability of GIS is used to generate TNDs. Many studies focus on artificial intelligence as the main method to generate the TNDs, but the focus of this research is to combine GIS and artificial intelligence capabilities in order to generate a multi-objective GIS-based procedure to construct different bus network designs and explore and evaluate them to find the suitable transit network alternative.展开更多
The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers b...The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.展开更多
Public transportation network reorganisation can be a key measure in designing more efficient networks and increasing the number of passengers. To date, several authors have proposed models for the “transit route net...Public transportation network reorganisation can be a key measure in designing more efficient networks and increasing the number of passengers. To date, several authors have proposed models for the “transit route network design problem” (TRNDP), and many of them use a transit assignment model as one component. However, not all models have considered the “common lines problem,” which is an essential feature in transit network assignment and is based on the concept that the fastest way to get to a destination is to take the first vehicle arriving among an “attractive” set of lines. Thus, we sought to reveal the features of considering the common lines problem by comparing results with and without considering the problem in a transit assignment model. For comparison, a model similar to a previous one was used, formulated as a bi-level optimisation problem, the upper problem of which is described as a multi-objective problem. As a result, although the solutions with and without considering the common lines showed almost the same Pareto front, we confirmed that a more direct service is provided if the common lines problem is considered whereas a less direct service is provided if it is not. With a small network case study, we found that considering the common lines problem in the TRNDP is important as it allows operators to provide more direct services.展开更多
A campus bus network design and evaluation, taking Tsinghua University as an example, is investigated in this paper. To minimize the total cost for both passengers and operator, the campus bus system planning in a seq...A campus bus network design and evaluation, taking Tsinghua University as an example, is investigated in this paper. To minimize the total cost for both passengers and operator, the campus bus system planning in a sequential approach is discussed, including the route network design, headway (i.e., the inverse of service frequency) optimization, and system evaluation. The improved genetic algorithm is proposed to optimize the route network based on the route property, and the impacts of the fluctuation of passenger demand and average traveling time are analyzed. The identity proportion in the headway optimization is then introduced with full consideration of its impacts. Based on the actual variety of passenger demand, a non-fixed schedule demonstrates its efficiency. VISSIM is finally adopted to simulate the campus bus system and a comprehensive evaluation system for the campus bus is developed. Compared with the current bus network and the one without considering the route property, the evaluation of the proposed approach shows an improvement of 18.7% and 10.1%, respectively. Moreover, the sequential approach shows an efficiency significance for the development of public transit systems passengers and operator. mprovement over the alternative method. It is of great n large industrial parks to decrease the total cost for both展开更多
文摘In this paper,combined with the relevant speed theory and characteristics of the law,the current highway speed transition design problems are studied and analyzed.In the process of specific analysis,mainly combined with the characteristics of different types of highway speed changes and road section design requirements,this paper studies and analyzes the design methods of different types of highway speed transition section.And on this basis,according to the design principles and requirements of highway operation speed transition section,the paper summarizes the matters needing attention in the design of highway operation speed transition section,in order to provide certain reference value for relevant personnel.
文摘Public transit planning is a user-oriented problem, respectful of financial issues and involves different stakeholders such as the general public, the transportation provider and the local government. One of the main components of public transit planning is the transit network design (TND) problem. This research is an attempt to perform transit network design and analysis in the city of Sanandaj, Iran using the capabilities of GIS and Honeybee algorithm. Objectives of this study are formulating a multi-objective model of the TND problem, developing a GIS-based procedure for solving the TND problem and examination of the solutions using artificial metaheuristic methods such as honeybee algorithm. The transit network design approach in this research, aims to reduce the walking distance, the total travel distance and the total number of stops needed for a suitable transit service in Sanandaj, Iran. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modelling functionalities and using the abilities of the artificial intelligence in modelling and assessment of the transit network.
文摘The public transit system in Sanandaj has been under review and modification for the last several years. The goal is to reduce the traffic congestion and the share of private car usage in the city and increase the very low share of the public transit. The bus routes in Sanandaj are not connected. There is no connected transit network with the ability to transfer between the routes in locations outside of the downtown terminal. The routes mostly connect the downtown core directly to the peripheries without providing travel options for passengers between peripheries. Although there has been some improvement in the transit system, lack of service in many populated districts of Sanandaj and town nearby makes the transit system unpopular and unreliable. This research is an attempt to provide solutions for the transit network design (TND) problem in Sanandaj using the capabilities of GIS and artificial intelligence methods. GIS offers several tools that enable the decision-makers to investigate the spatial correlations between different features. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modeling functionalities. The visual ability of GIS is used to generate TNDs. Many studies focus on artificial intelligence as the main method to generate the TNDs, but the focus of this research is to combine GIS and artificial intelligence capabilities in order to generate a multi-objective GIS-based procedure to construct different bus network designs and explore and evaluate them to find the suitable transit network alternative.
基金Projects(71301115,71271150,71101102)supported by the National Natural Science Foundation of ChinaProject(20130032120009)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.
文摘Public transportation network reorganisation can be a key measure in designing more efficient networks and increasing the number of passengers. To date, several authors have proposed models for the “transit route network design problem” (TRNDP), and many of them use a transit assignment model as one component. However, not all models have considered the “common lines problem,” which is an essential feature in transit network assignment and is based on the concept that the fastest way to get to a destination is to take the first vehicle arriving among an “attractive” set of lines. Thus, we sought to reveal the features of considering the common lines problem by comparing results with and without considering the problem in a transit assignment model. For comparison, a model similar to a previous one was used, formulated as a bi-level optimisation problem, the upper problem of which is described as a multi-objective problem. As a result, although the solutions with and without considering the common lines showed almost the same Pareto front, we confirmed that a more direct service is provided if the common lines problem is considered whereas a less direct service is provided if it is not. With a small network case study, we found that considering the common lines problem in the TRNDP is important as it allows operators to provide more direct services.
基金supported by the National Natural Science Foundation of China (No.61673233)Beijing Municipal Science and Technology Program (No.D15110900280000)
文摘A campus bus network design and evaluation, taking Tsinghua University as an example, is investigated in this paper. To minimize the total cost for both passengers and operator, the campus bus system planning in a sequential approach is discussed, including the route network design, headway (i.e., the inverse of service frequency) optimization, and system evaluation. The improved genetic algorithm is proposed to optimize the route network based on the route property, and the impacts of the fluctuation of passenger demand and average traveling time are analyzed. The identity proportion in the headway optimization is then introduced with full consideration of its impacts. Based on the actual variety of passenger demand, a non-fixed schedule demonstrates its efficiency. VISSIM is finally adopted to simulate the campus bus system and a comprehensive evaluation system for the campus bus is developed. Compared with the current bus network and the one without considering the route property, the evaluation of the proposed approach shows an improvement of 18.7% and 10.1%, respectively. Moreover, the sequential approach shows an efficiency significance for the development of public transit systems passengers and operator. mprovement over the alternative method. It is of great n large industrial parks to decrease the total cost for both