期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HETMB_(2)) 被引量:7
1
作者 Weiming ZHANG Fu-Zhi DAI +6 位作者 Huimin XIANG Biao ZHAO Xiaohui WANG Na NI Rajamallu KARRE Shijiang WU Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1299-1316,共18页
The advance in communication technology has triggered worldwide concern on electromagnetic wave pollution.To cope with this challenge,exploring high-performance electromagnetic(EM)wave absorbing materials with dielect... The advance in communication technology has triggered worldwide concern on electromagnetic wave pollution.To cope with this challenge,exploring high-performance electromagnetic(EM)wave absorbing materials with dielectric and magnetic losses coupling is urgently required.Of the EM wave absorbers,transition metal diborides(TMB2)possess excellent dielectric loss capability.However,akin to other single dielectric materials,poor impedance match leads to inferior performance.High-entropy engineering is expected to be effective in tailoring the balance between dielectric and magnetic losses through compositional design.Herein,three HE TMB2 powders with nominal equimolar TM including HE TMB2-I(TM=Zr,Hf,Nb,Ta),HE TMB2-2(TM=Ti,Zr,Hf,Nb,Ta),and HE TMB2-3(TM=Cr,Zr,Hf,Nb,Ta)have been designed and prepared by one-step boro/carbothermal reduction.As a result of synergistic effects of strong attenuation capability and impedance match,HE TMB2-1 shows much improved performance with the optimal minimum reflection loss(RL_(min))of-59.6 dB(8.48 GHz,2.68 mm)and effective absorption bandwidth(EAB)of 7.6 GHz(2.3 mm).Most impressively,incorporating Cr in HE TMB2-3 greatly improves the impedance match over 1-18 GHz,thus achieving the RLmin of-56.2 dB(8.48 GHz,2.63 mm)and the EAB of 11.0 GHz(2.2 mm),which is superior to most other EM wave absorbing materials.This work reveals that constructing high-entropy compounds,especially by incorporating magnetic elements,is effectual in tailoring the impedance match for highly conductive compounds,i.e.,tuning electrical conductivity and boosting magnetic loss to realize highly efficient and broadband EM wave absorption with dielectric and magnetic coupling in single-phase materials. 展开更多
关键词 transition metal diboride(TMB2) high-entropy(HE)ceramics electronic structure microwave absorption dielectric and magnetic losses coupling
原文传递
Theoretical predictions and experimental verification on the phase stability of enthalpy-stabilized HE TMREB_(2)s
2
作者 Ze Zhang Shizhen Zhu +8 位作者 Fu-Zhi Dai Huimin Xiang Yanbo Liu Ling Liu Zhuang Ma Shijiang Wu Fei Liu Kuang Sun Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第26期154-162,共9页
Transition metal diborides(TMB_(2)s)are the materials of choice in extreme environments due to their excellent thermal and chemical stabilities.However,the degradation of oxidation resistance of TMB_(2)s at elevated t... Transition metal diborides(TMB_(2)s)are the materials of choice in extreme environments due to their excellent thermal and chemical stabilities.However,the degradation of oxidation resistance of TMB_(2)s at elevated temperature still hinders their applications.To cope with this challenge,it is effective to incorporate rare earth elements to form high-entropy transition and rare-earth metal diborides(HE TMREBs).To obtain thermodynamically stable single-phase structures for HE TMREB_(2)s,a“16×16 mixed enthalpy matrix”is constructed using first-principles calculations to predict the single-phase formation ability of120 two-component diborides(TCBs).Through the use of the“16×16 mixed enthalpy matrix”of TCBs,specific combinations of TMB_(2)s and REB_(2)s that are most likely to form single-phase HE TMREB_(2)s are confirmed.Subsequently,based on the energy distribution of the local mixing enthalpies of all possible configurations,the enthalpy and entropy descriptors of HE TMREB_(2)s(RE=Sc,Lu,Tm,Er,Ho and Dy)are investigated.It is found that the mixing enthalpy plays a critical role in the stability of the single-phase HE TMREB_(2)s,i.e.,HE TMREB_(2)s are enthalpy-stabilized materials.The experimental results further confirm that enthalpy dominates the thermodynamic domain and drives the stability of REB_(2)s in HE TMREB_(2)s.This study validates that enthalpy-stabilized HE TMREB_(2)s can further expand the compositional space of ultrahigh temperature ceramics(UHTCs)and is expected to further improve the oxidation resistance and high temperature properties of UHTCs. 展开更多
关键词 High-entropy ceramics Ultrahigh temperature ceramics First-principles calculation Mixing enthalpy transition and rare earth metal diborides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部