The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and appli...The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.展开更多
Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming...Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming of TRB is problematic because of the varying properties; especially, springback is a main challenge. The transverse bending (bending axis is perpendicular to the rolling direction) of TRB U channel was studied through simulation and experiment. The forming characteristics of TRB U channel during transverse bending were analyzed. The mechanisms of forming defects, including bending springback and thickness transition zone (TTZ) movement, were revealed. On this basis, effects of blank geometric parameters on springbaek and TTZ movement were discussed. The results indicate that springback and TTZ movement happen during transverse bending of TRB U-channel. Nonuni form stress distribution is the most fundamental reason for the occurrence of springback of TRB during transverse bending. Annealing can eliminate nonuniform stress distribution, and thus diminish springbaek of TRB, especially springback on the thinner side. Therefore, springback of the whole TRB becomes more uniform. However, annealing can increase the TTZ movement. Blank thickness and TTZ position are the main factors affecting the formability of TRB U-channel during transverse bending.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51105068,51475086)Fundamental Research Funds for the Central Universities of China(N130323003,XNB201413)Science and Technology Research Project for Higher School of Hebei Province of China(Z2013068)
文摘The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.
基金Item Sponsored by National Natural Science Foundation of China(51475086)Natural Science Foundation of Hebei Province of China(E2016501118,E2015501073)China Postdoctoral Science Foundation(2016M591404)
文摘Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming of TRB is problematic because of the varying properties; especially, springback is a main challenge. The transverse bending (bending axis is perpendicular to the rolling direction) of TRB U channel was studied through simulation and experiment. The forming characteristics of TRB U channel during transverse bending were analyzed. The mechanisms of forming defects, including bending springback and thickness transition zone (TTZ) movement, were revealed. On this basis, effects of blank geometric parameters on springbaek and TTZ movement were discussed. The results indicate that springback and TTZ movement happen during transverse bending of TRB U-channel. Nonuni form stress distribution is the most fundamental reason for the occurrence of springback of TRB during transverse bending. Annealing can eliminate nonuniform stress distribution, and thus diminish springbaek of TRB, especially springback on the thinner side. Therefore, springback of the whole TRB becomes more uniform. However, annealing can increase the TTZ movement. Blank thickness and TTZ position are the main factors affecting the formability of TRB U-channel during transverse bending.