The oxygenation constants and thermodynamic parameter (ΔHo, ΔSo) of Co (II) complexes with unsymmetrical bis-Schiff baeses were measured and their Mn(III) complexes as models of mimicking monooxygenase were employed...The oxygenation constants and thermodynamic parameter (ΔHo, ΔSo) of Co (II) complexes with unsymmetrical bis-Schiff baeses were measured and their Mn(III) complexes as models of mimicking monooxygenase were employed to catalyze epoxidation of styrene. The effect of substituent R in a salicylidene of ML1~ML4 [ M = Co (II), Mn (III)Cl ] on the dioxygen affinities and biomimetic catalytic oxidation performance were also investigated. Among them, the MnL4Cl containing a pendant benzoaza crown ether ring showed highest conversion and selectiviy up to 54.9% and 96.9% respectively.展开更多
Diethyl malonate was synthesized by transition-metal catalyzed alkoxycarbonylation of ethyl chloroacetate. The results show that the conversion of ethyl chloroacetate is greater than 92%, and the selectivity to diethy...Diethyl malonate was synthesized by transition-metal catalyzed alkoxycarbonylation of ethyl chloroacetate. The results show that the conversion of ethyl chloroacetate is greater than 92%, and the selectivity to diethyl malonate is 67.5%.展开更多
The oxygenation constants of transition-metal complexes with benzoin Schiff bases were measured and these complexes were first employed as models for mimicking monooxygenase in catalytic epoxidation of styrene. The hi...The oxygenation constants of transition-metal complexes with benzoin Schiff bases were measured and these complexes were first employed as models for mimicking monooxygenase in catalytic epoxidation of styrene. The highest conversion and selectivity were up to 39.6% and 100% respectively at ambient temperature and pressure. The effects of structures of the bridge group R in the ligands on the dioxygen affinities and catalytic activities to epoxidize styrene were also investigated.展开更多
The dioxygen affinities and biomimetic catalytic performance of transition-metal complexes with (15-crown-5) salophen and its substituted derivatives Mere examined. The oxygenation constants of Co(II) complexes with c...The dioxygen affinities and biomimetic catalytic performance of transition-metal complexes with (15-crown-5) salophen and its substituted derivatives Mere examined. The oxygenation constants of Co(II) complexes with crowned bis-Schiff bases were measured and their Mn(III) complexes were employed as models to mimic monooxygenase in catalytic epoxidation of styrene. The highest conversion and selectivity were up to 57.2% and 100% respectively at ambient temperature and pressure. The effects of crown ether ring and substituents R on the dioxygen affinities and catalytic activities were also investigated through comparing with the uncrowned analogues.展开更多
On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the ma...On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .展开更多
A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system...A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system, and the 6 dimensional eigenmatrices of two new types in real and complex orbital representations were derived from this electron model forth. In comparison with real and complex orbital methods offered by the hole model, the real and complex orbital methods reported in this paper not only could give directly all the electronic structure parameters for the n d 5(t 5 2, 2T 2) multielectron system, but also showed many other new advantages such as standardization in theory, systematization in method, agreement in calculation and so on.展开更多
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ...We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.展开更多
This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is ...This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.展开更多
New reagents for immunofluorescence analysis of carbazole series containing fluorinated β-dicarbonyl fragments and carboxylic substituent groups separated by spacers of different lengths from the light-gathering carb...New reagents for immunofluorescence analysis of carbazole series containing fluorinated β-dicarbonyl fragments and carboxylic substituent groups separated by spacers of different lengths from the light-gathering carbazole scaffold have been developed. The markers in complex with Eu<sup>3+</sup> ions possess stability in the aqueous phase, intense and prolonged luminescence (τ 550 - 570 μs) with characteristic emission maxima in the region of 615 nm and excitation wavelengths in the region of 380 - 390 nm, which distinguishes them from most of the analogs used. In the study of marker conjugation with streptavidin, a reagent containing 4 - 5 europium labeling complexes based on spacer-containing carbazole tetraketone was obtained. The marker-doped silicate nanoparticles exhibit intense and long-lived luminescence in the characteristic region.展开更多
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ...The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.展开更多
Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong s...Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong signal of liposomes under cryo-EM imaging conditions often interferes with the structural determination of the embedded membrane proteins.Here,we propose a liposome signal subtraction method based on single-particle two-dimensional(2D)classification average images,aimed at enhancing the reconstruction resolution of membrane proteins.We analyzed the signal distribution characteristics of liposomes and proteins within the 2D classification average images of protein–liposome complexes in the frequency domain.Based on this analysis,we designed a method to subtract the liposome signals from the original particle images.After the subtraction,the accuracy of single-particle three-dimensional(3D)alignment was improved,enhancing the resolution of the final 3D reconstruction.We demonstrated this method using a PIEZO1-proteoliposome dataset by improving the resolution of the PIEZO1 protein.展开更多
Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity...Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity character,which may promote the production of copolymers from ethylene and polar comonomers,is another aspect that attracts much attention in both academic and industrial fields.The immobilization of LTM catalysts on spherical supports is a crucial step prior to their use in the industrial processes of gas-phase or slurry polymerizations.This paper reviews recent developments in supported LTM catalysts for olefin polymerization,and summarizes loading methods and mechanisms of the immobilization of LTM catalysts on inorganic,organic,and inorganic-organic materials,and the effects of immobilization on catalytic activity,polymerization mechanism,and polymer morphology.展开更多
Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a hi...Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.展开更多
CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding,offering enormous potential for crop improvement and food production.Although the direct delivery of Cas9-single guide RNA(sg...CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding,offering enormous potential for crop improvement and food production.Although the direct delivery of Cas9-single guide RNA(sgRNA)ribonucleoprotein(RNP)complexes to grapevine(Vitis vinifera)protoplasts has been shown before,the regeneration of edited protoplasts into whole plants has not been reported.Here,we describe an efficient approach to obtain transgene-free edited grapevine plants by the transfection and subsequent regeneration of protoplasts isolated from embryogenic callus.As proof of concept,a single-copy green f luorescent protein reporter gene(GFP)in the grapevine cultivar Thompson Seedless was targeted and knocked out by the direct delivery of RNPs to protoplasts.CRISPR/Cas9 activity,guided by two independent sgRNAs,was confirmed by the loss of GFP f luorescence.The regeneration of GFP−protoplasts into whole plants was monitored throughout development,confirming that the edited grapevine plants were comparable in morphology and growth habit to wild-type controls.We report the first highly efficient protocol for DNA-free genome editing in grapevine by the direct delivery of preassembled Cas9-sgRNA RNP complexes into protoplasts,helping to address the regulatory concerns related to genetically modified plants.This technology could encourage the application of genome editing for the genetic improvement of grapevine and other woody crop plants.展开更多
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch...For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.展开更多
Ru(II)polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical,photochemical,and biological properties.Despite their promising therapeutic profile,the vast majori...Ru(II)polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical,photochemical,and biological properties.Despite their promising therapeutic profile,the vast majority of compounds are associated with poor water solubility and poor cancer selectivity.Among the different strategies employed to overcome these pharmacological limitations,many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II)polypyridine complexes into nanoparticles.This article highlights recent developments in the design,preparation,and physicochemical properties of Ru(II)polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.展开更多
Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large comme...Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large commercial complex buildings in China, investigate the safety evacuation problems encountered during the evacuation process and the evacuation optimization design strategy, the paper uses Pathfinder to build a simulation model based on literature research and study to simulate the evacuation of personnel in a large commercial complex in Dalian and explore its problems during the evacuation process. The results show that the type of personnel has an effect on the large commercial complex’s evacuation simulation results;the total number of evacuees is non-linearly correlated with the time change curve;some staircases take a long time to evacuate and have a low utilization rate. To improve evacuation efficiency, optimization suggestions for safety exits, evacuation stairs, and evacuation channels are made based on the results.展开更多
Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investi...Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investigated by elemental analysis, molar conductance measurements, infrared spectroscopy, electronic spectroscopy, and 1HNMR spectroscopy. The elemental analysis data suggested a 1:1 [M:L] ratio for the complexes. The molar conductance measurements of the complexes indicate their electrolytic nature in DMSO as a solvent. The absorption bands in the electronic spectra verified an octahedral environment around the metal ions in the complexes.展开更多
A new electrophilic polymer, 2,4-dinitrophenyl ether of polyvinyl alcohol (PVA-DNP), having a degree of substitution of 0.5 was prepared from polyvinyl alcohol (PVA) and 1-fluro-2,4-dinitrobenzene (DNFB). The PVA-DNP ...A new electrophilic polymer, 2,4-dinitrophenyl ether of polyvinyl alcohol (PVA-DNP), having a degree of substitution of 0.5 was prepared from polyvinyl alcohol (PVA) and 1-fluro-2,4-dinitrobenzene (DNFB). The PVA-DNP polymer was characterized by NMR, IR, and UV-visible spectroscopy. The reaction of PVA-DNP with sodium methoxide was followed by NMR and UV-visible spectroscopy. Evidence of polymer bound spirocyclic SIGMA complex, C-1 and C-3 polymer bound DNP-methoxy SIGMA complexes and the formation and C-1 methoxy complex of 2,4-dinitroanisole was observed.展开更多
The ligand o-phenylenediamine (opda) and its oxidized form, o-benzoquinonediimine (bqdi), act as a fascinating candidate coordinating toward transition metal ions leading to the photochemical hydrogen production in ab...The ligand o-phenylenediamine (opda) and its oxidized form, o-benzoquinonediimine (bqdi), act as a fascinating candidate coordinating toward transition metal ions leading to the photochemical hydrogen production in absence of photosensitizers. Herein, we report the systematic study of the interaction between the oxidized form bqdi ligand, tris-(o-benzoquinonediimine) with divalent first-row transition metal series using DFT calculations. The lowest energy structures, bond length, binding energies, frontier molecular orbital analysis, natural bond orbitals, and global reactivity descriptor were calculated using B3LYP/6-311G(d,P) level of theory. The time dependent-DFT at the CAM-B3LYP/6-311+G(d,p) level of theory was applied to determine the electronic structures and the optical spectra. The theoretical binding trend of the divalent first-row transition metal series is decreasing as follows: Cu >Ti > V > Co > Ni > Fe > Cr > Zn >Mn. Among them, the binding potency of iron (II) by the bqdi ligand was not predominantly sturdy as compared to other first-row divalent transition metal ions. The origin of strong coordination with Fe(II) is attributed to its extra capability to induce covalent coordination of bqdi ligands. The complex exhibited two strong peaks at 370 nm and 452 nm, due to the HOMO-3 to LUMO+1 and HOMO-1 to LUMO transitions, respectively. Natural bond orbital analysis showed that the major interaction happens between the N lone pair electrons of the ligand with an anti-bonding orbital of metal ions, in which Ti showed the highest interaction energy than other metal ions. The present systemic DFT study of bqdi ligands with the first-row transition metals strongly encourages the future establishment of photochemical hydrogen production in absence of photosensitizers.展开更多
文摘The oxygenation constants and thermodynamic parameter (ΔHo, ΔSo) of Co (II) complexes with unsymmetrical bis-Schiff baeses were measured and their Mn(III) complexes as models of mimicking monooxygenase were employed to catalyze epoxidation of styrene. The effect of substituent R in a salicylidene of ML1~ML4 [ M = Co (II), Mn (III)Cl ] on the dioxygen affinities and biomimetic catalytic oxidation performance were also investigated. Among them, the MnL4Cl containing a pendant benzoaza crown ether ring showed highest conversion and selectiviy up to 54.9% and 96.9% respectively.
文摘Diethyl malonate was synthesized by transition-metal catalyzed alkoxycarbonylation of ethyl chloroacetate. The results show that the conversion of ethyl chloroacetate is greater than 92%, and the selectivity to diethyl malonate is 67.5%.
文摘The oxygenation constants of transition-metal complexes with benzoin Schiff bases were measured and these complexes were first employed as models for mimicking monooxygenase in catalytic epoxidation of styrene. The highest conversion and selectivity were up to 39.6% and 100% respectively at ambient temperature and pressure. The effects of structures of the bridge group R in the ligands on the dioxygen affinities and catalytic activities to epoxidize styrene were also investigated.
基金the National Natural Science Foundation of China.
文摘The dioxygen affinities and biomimetic catalytic performance of transition-metal complexes with (15-crown-5) salophen and its substituted derivatives Mere examined. The oxygenation constants of Co(II) complexes with crowned bis-Schiff bases were measured and their Mn(III) complexes were employed as models to mimic monooxygenase in catalytic epoxidation of styrene. The highest conversion and selectivity were up to 57.2% and 100% respectively at ambient temperature and pressure. The effects of crown ether ring and substituents R on the dioxygen affinities and catalytic activities were also investigated through comparing with the uncrowned analogues.
文摘On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .
文摘A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system, and the 6 dimensional eigenmatrices of two new types in real and complex orbital representations were derived from this electron model forth. In comparison with real and complex orbital methods offered by the hole model, the real and complex orbital methods reported in this paper not only could give directly all the electronic structure parameters for the n d 5(t 5 2, 2T 2) multielectron system, but also showed many other new advantages such as standardization in theory, systematization in method, agreement in calculation and so on.
基金National Research Foundation of Korea,Grant/Award Numbers:2019H1D3A1A01071209,2021R1I1A1A01060380,2022R1A2C2010686,2022R1A4A3033528Korea Basic Science Institute,Grant/Award Numbers:2019R1A6C1010042,2021R1A6C103A427。
文摘We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.
文摘This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.
文摘New reagents for immunofluorescence analysis of carbazole series containing fluorinated β-dicarbonyl fragments and carboxylic substituent groups separated by spacers of different lengths from the light-gathering carbazole scaffold have been developed. The markers in complex with Eu<sup>3+</sup> ions possess stability in the aqueous phase, intense and prolonged luminescence (τ 550 - 570 μs) with characteristic emission maxima in the region of 615 nm and excitation wavelengths in the region of 380 - 390 nm, which distinguishes them from most of the analogs used. In the study of marker conjugation with streptavidin, a reagent containing 4 - 5 europium labeling complexes based on spacer-containing carbazole tetraketone was obtained. The marker-doped silicate nanoparticles exhibit intense and long-lived luminescence in the characteristic region.
文摘The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32241023 and 92254306)the Fund from the Tsinghua–Peking Joint Center for Life SciencesBeijing Frontier Research Center for Biological Structure。
文摘Reconstituting membrane proteins in liposomes and determining their structure is a common method for determining membrane protein structures using single-particle cryo-electron microscopy(cryo-EM).However,the strong signal of liposomes under cryo-EM imaging conditions often interferes with the structural determination of the embedded membrane proteins.Here,we propose a liposome signal subtraction method based on single-particle two-dimensional(2D)classification average images,aimed at enhancing the reconstruction resolution of membrane proteins.We analyzed the signal distribution characteristics of liposomes and proteins within the 2D classification average images of protein–liposome complexes in the frequency domain.Based on this analysis,we designed a method to subtract the liposome signals from the original particle images.After the subtraction,the accuracy of single-particle three-dimensional(3D)alignment was improved,enhancing the resolution of the final 3D reconstruction.We demonstrated this method using a PIEZO1-proteoliposome dataset by improving the resolution of the PIEZO1 protein.
基金supported by the National Natural Science Foundation of China (20972025)the China National Petroleum Corporation (CNPC)Innovation Foundation (2010D-5006-0504)+1 种基金Scientific Research Foundation for the Returned Overseas Chinese Scholars,Heilongjiang Province(41417837-8-08016)Scientific Research Foundation for Overseas Chinese Scholars,Department of education of Heilongjiang Province(1154H14)
文摘Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity character,which may promote the production of copolymers from ethylene and polar comonomers,is another aspect that attracts much attention in both academic and industrial fields.The immobilization of LTM catalysts on spherical supports is a crucial step prior to their use in the industrial processes of gas-phase or slurry polymerizations.This paper reviews recent developments in supported LTM catalysts for olefin polymerization,and summarizes loading methods and mechanisms of the immobilization of LTM catalysts on inorganic,organic,and inorganic-organic materials,and the effects of immobilization on catalytic activity,polymerization mechanism,and polymer morphology.
基金the Natural Science Foundation of China(Grant Nos.21871065,22209129,and 22071038)the Heilongjiang Touyan Team(HITTY-20190033)+3 种基金High-Level Innovation and Entrepreneurship(QCYRCXM-2022-123)the Talent Project of Qinchuangyuan and Interdisciplinary Research Foundation of HIT(IR2021205)Professor Li acknowledges the financial support from the“Young Talent Support Plan”of Xi'an Jiaotong University(HG6J024)the“Young Talent Lift Plan”of Xi'an city(095920221352).
文摘Sustainable production of H2 through electrochemical water splitting is of great importance in the foreseeable future.Transition-metal metaphosphates(TMMPs)have a three-dimensional(3D)open-framework structure and a high content of P(which exists as PO3-),and therefore have been recognized as highly efficient catalysts for oxygen evolution reaction(OER)and the bottleneck of electrochemical water splitting.Furthermore,TMMPs can also contribute to hydrogen evolution reaction(HER)in alkaline and neutral media by facilitating water dissociation,and thus,overall water splitting can be achieved using this kind of material.In this timely review,we summarize the recent advances in the synthesis of TMMPs and their applications in OER and HER.We present a brief introduction of the structure and synthetic strategies of TMMPs in the first two parts.Then,we review the latest progress made in research on TMMPs as OER,HER,and overall water-splitting electrocatalysts.In this part,the intrinsic activity of TMMPs as well as the current strategy for improving the catalytic activity will be discussed systematically.Finally,we present the future opportunities and the remaining challenges for the application of TMMPs in the electrocatalysis field.
基金This research was funded by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant no.754345 awarded to SN,the University of Verona in the framework of the Grant Ricerca di Base“Definition of master regulator genes of fruit ripening in grapevine”awarded to SZ,and the Ministero delle Politiche Agricole Alimentari e Forestali(Mipaaf)in the framework of the BIOTECH-VITECH(CIG:8704614AB4)project awarded to SZ.
文摘CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding,offering enormous potential for crop improvement and food production.Although the direct delivery of Cas9-single guide RNA(sgRNA)ribonucleoprotein(RNP)complexes to grapevine(Vitis vinifera)protoplasts has been shown before,the regeneration of edited protoplasts into whole plants has not been reported.Here,we describe an efficient approach to obtain transgene-free edited grapevine plants by the transfection and subsequent regeneration of protoplasts isolated from embryogenic callus.As proof of concept,a single-copy green f luorescent protein reporter gene(GFP)in the grapevine cultivar Thompson Seedless was targeted and knocked out by the direct delivery of RNPs to protoplasts.CRISPR/Cas9 activity,guided by two independent sgRNAs,was confirmed by the loss of GFP f luorescence.The regeneration of GFP−protoplasts into whole plants was monitored throughout development,confirming that the edited grapevine plants were comparable in morphology and growth habit to wild-type controls.We report the first highly efficient protocol for DNA-free genome editing in grapevine by the direct delivery of preassembled Cas9-sgRNA RNP complexes into protoplasts,helping to address the regulatory concerns related to genetically modified plants.This technology could encourage the application of genome editing for the genetic improvement of grapevine and other woody crop plants.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(Nos.21931002 and 22101123)the National Key Research and Development Program of China(2018YFB0704100)+4 种基金the Shenzhen Science and Technology Innovation Committee(no.JCYJ20200109140812302)the Leading talents of Guangdong province program(2016LJ06N507)the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(no.2018B030322001)the Guangdong Provincial Key Laboratory of Catalysis(no.2020B121201002)Outstanding Talents Training Fund in Shenzhen.
文摘For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.
文摘Ru(II)polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical,photochemical,and biological properties.Despite their promising therapeutic profile,the vast majority of compounds are associated with poor water solubility and poor cancer selectivity.Among the different strategies employed to overcome these pharmacological limitations,many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II)polypyridine complexes into nanoparticles.This article highlights recent developments in the design,preparation,and physicochemical properties of Ru(II)polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.
文摘Large commercial complexes are large in scale, complex in function, and located in densely populated areas that are prone to casualties due to unfavorable evacuation. To comprehend the safety evacuation of large commercial complex buildings in China, investigate the safety evacuation problems encountered during the evacuation process and the evacuation optimization design strategy, the paper uses Pathfinder to build a simulation model based on literature research and study to simulate the evacuation of personnel in a large commercial complex in Dalian and explore its problems during the evacuation process. The results show that the type of personnel has an effect on the large commercial complex’s evacuation simulation results;the total number of evacuees is non-linearly correlated with the time change curve;some staircases take a long time to evacuate and have a low utilization rate. To improve evacuation efficiency, optimization suggestions for safety exits, evacuation stairs, and evacuation channels are made based on the results.
文摘Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investigated by elemental analysis, molar conductance measurements, infrared spectroscopy, electronic spectroscopy, and 1HNMR spectroscopy. The elemental analysis data suggested a 1:1 [M:L] ratio for the complexes. The molar conductance measurements of the complexes indicate their electrolytic nature in DMSO as a solvent. The absorption bands in the electronic spectra verified an octahedral environment around the metal ions in the complexes.
文摘A new electrophilic polymer, 2,4-dinitrophenyl ether of polyvinyl alcohol (PVA-DNP), having a degree of substitution of 0.5 was prepared from polyvinyl alcohol (PVA) and 1-fluro-2,4-dinitrobenzene (DNFB). The PVA-DNP polymer was characterized by NMR, IR, and UV-visible spectroscopy. The reaction of PVA-DNP with sodium methoxide was followed by NMR and UV-visible spectroscopy. Evidence of polymer bound spirocyclic SIGMA complex, C-1 and C-3 polymer bound DNP-methoxy SIGMA complexes and the formation and C-1 methoxy complex of 2,4-dinitroanisole was observed.
文摘The ligand o-phenylenediamine (opda) and its oxidized form, o-benzoquinonediimine (bqdi), act as a fascinating candidate coordinating toward transition metal ions leading to the photochemical hydrogen production in absence of photosensitizers. Herein, we report the systematic study of the interaction between the oxidized form bqdi ligand, tris-(o-benzoquinonediimine) with divalent first-row transition metal series using DFT calculations. The lowest energy structures, bond length, binding energies, frontier molecular orbital analysis, natural bond orbitals, and global reactivity descriptor were calculated using B3LYP/6-311G(d,P) level of theory. The time dependent-DFT at the CAM-B3LYP/6-311+G(d,p) level of theory was applied to determine the electronic structures and the optical spectra. The theoretical binding trend of the divalent first-row transition metal series is decreasing as follows: Cu >Ti > V > Co > Ni > Fe > Cr > Zn >Mn. Among them, the binding potency of iron (II) by the bqdi ligand was not predominantly sturdy as compared to other first-row divalent transition metal ions. The origin of strong coordination with Fe(II) is attributed to its extra capability to induce covalent coordination of bqdi ligands. The complex exhibited two strong peaks at 370 nm and 452 nm, due to the HOMO-3 to LUMO+1 and HOMO-1 to LUMO transitions, respectively. Natural bond orbital analysis showed that the major interaction happens between the N lone pair electrons of the ligand with an anti-bonding orbital of metal ions, in which Ti showed the highest interaction energy than other metal ions. The present systemic DFT study of bqdi ligands with the first-row transition metals strongly encourages the future establishment of photochemical hydrogen production in absence of photosensitizers.