随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压...随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压力。合理的风电爬坡事件检测以及精准的风电功率预测能为风电场运维及电力系统调度提供先验指导,有力缓解风电不确定性带来的危害。首先讨论了目前主流风电爬坡事件定义的盲点,分类并分析了3种风电爬坡场景的功率变化特性,据此提出基于滑动窗双边累计和(cumulative sum, CUSUM)算法的风电爬坡事件检测方法,提取时序耦合信息,捕捉短时间窗口内风电功率数据的异常波动,提高风电爬坡事件检测精度。其次,采用贝叶斯优化的长短期记忆(long short term memory, LSTM)神经网络,最优化模型超参数,提高模型对于爬坡事件发生时风机出力的预测性能。进一步应用所提风电爬坡事件检测方法,对模型预测区间内的风电爬坡事件进行检测实验,验证了所提方法的有效性。展开更多
工业控制场合中,需要获取非线性被控对象的结构特性,而系统动态响应的数据直接从外部特征上反映了非线性系统结构关系.为了充分利用非线性动态系统响应过程中的数据,本文提出了一种基于滑动数据窗口(sliding data window)的贝叶斯-高斯...工业控制场合中,需要获取非线性被控对象的结构特性,而系统动态响应的数据直接从外部特征上反映了非线性系统结构关系.为了充分利用非线性动态系统响应过程中的数据,本文提出了一种基于滑动数据窗口(sliding data window)的贝叶斯-高斯神经网络(SW-BGNN)模型.该模型将数据融合于网络模型结构中,借助于贝叶斯推理和高斯假设,利用滑动窗口数据,实现非线性动态系统的辨识和预测.整个SW-BGNN本身需要确定的参数很少,因此运算的时间很短,适合于非线性动态系统的在线辨识.将SW-BGNN应用于几个非线性动态系统的辨识和预测,仿真试验结果表明了SW--BGNN模型的有效性.展开更多
文摘随着新能源并网进程的推进,风电装机规模逐年扩大。受区域内天气变化影响,风机出力的间歇性和波动性特征对电网的威胁亦越发显著。极端天气所引发的风电出力异常爬坡事件,易导致电网功率失衡,对电力系统机组调度、源荷平衡造成了极大压力。合理的风电爬坡事件检测以及精准的风电功率预测能为风电场运维及电力系统调度提供先验指导,有力缓解风电不确定性带来的危害。首先讨论了目前主流风电爬坡事件定义的盲点,分类并分析了3种风电爬坡场景的功率变化特性,据此提出基于滑动窗双边累计和(cumulative sum, CUSUM)算法的风电爬坡事件检测方法,提取时序耦合信息,捕捉短时间窗口内风电功率数据的异常波动,提高风电爬坡事件检测精度。其次,采用贝叶斯优化的长短期记忆(long short term memory, LSTM)神经网络,最优化模型超参数,提高模型对于爬坡事件发生时风机出力的预测性能。进一步应用所提风电爬坡事件检测方法,对模型预测区间内的风电爬坡事件进行检测实验,验证了所提方法的有效性。
文摘工业控制场合中,需要获取非线性被控对象的结构特性,而系统动态响应的数据直接从外部特征上反映了非线性系统结构关系.为了充分利用非线性动态系统响应过程中的数据,本文提出了一种基于滑动数据窗口(sliding data window)的贝叶斯-高斯神经网络(SW-BGNN)模型.该模型将数据融合于网络模型结构中,借助于贝叶斯推理和高斯假设,利用滑动窗口数据,实现非线性动态系统的辨识和预测.整个SW-BGNN本身需要确定的参数很少,因此运算的时间很短,适合于非线性动态系统的在线辨识.将SW-BGNN应用于几个非线性动态系统的辨识和预测,仿真试验结果表明了SW--BGNN模型的有效性.