期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
No Context, No Text --- The importance of Context in Translation 被引量:1
1
作者 Xianchun Zhu 《Sino-US English Teaching》 2006年第9期79-81,共3页
A translator, first of all, must understand a text before he/she translates it. Context plays an important role in the understanding and translation.of a text. This paper distinguishes linguistic context from situatio... A translator, first of all, must understand a text before he/she translates it. Context plays an important role in the understanding and translation.of a text. This paper distinguishes linguistic context from situational context, and explores their use and importance in translation. 展开更多
关键词 translation translator linguistic context situational context
下载PDF
Improving Language Translation Using the Hidden Markov Model 被引量:1
2
作者 Yunpeng Chang Xiaoliang Wang +2 位作者 Meihua Xue Yuzhen Liu Frank Jiang 《Computers, Materials & Continua》 SCIE EI 2021年第6期3921-3931,共11页
Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultur... Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultural exchange.With a large corpus,the performance of statistical machine translation based on words and phrases is limited due to the small size of modeling units.Previous statistical methods rely primarily on the size of corpus and number of its statistical results to avoid ambiguity in translation,ignoring context.To support the ongoing improvement of translation methods built upon deep learning,we propose a translation algorithm based on the Hidden Markov Model to improve the use of context in the process of translation.During translation,our Hidden Markov Model prediction chain selects a number of phrases with the highest result probability to form a sentence.The collection of all of the generated sentences forms a topic sequence.Using probabilities and article sequences determined from the training set,our method again applies the Hidden Markov Model to form the final translation to improve the context relevance in the process of translation.This algorithm improves the accuracy of translation,avoids the combination of invalid words,and enhances the readability and meaning of the resulting translation. 展开更多
关键词 Translation software hidden Markov model context translation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部