T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding ...T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding behavior remains unclear. Results in this study indicated that the pairing frequency rate of the two differently originated 6VS chromosomes in their F1 hybrid was 18.9% according to genomic in situ hybridization (GISH); the PM resistance plants in the F2 generation from the cross between T6V#4S·6DL translocation line Pm97033 and its PM susceptible wheat variety Wan7107 was fewer than expected. However, the ratio of the resistant vs. the susceptible plants of 15:1 in the F2 generation derived from the cross between the two translocation lines of T6V#2S·6AL and T6V#4S·6DL fitted well. Plants segregation ratio (homozygous:heterozygous:lacking) revealed by molecular marker for T6V#4S·6DL or T6V#2S·6AL in their F2 populations fitted the expected values of 1:2:1 well, inferring that the pairing of the two alien chromosome arms facilitates the transmission of T6V#4S·6DL from the F1 to the F2 generation. A quadrivalent was also observed in 21% of pollen mother cells (PMCs) of homozygote plants containing the two pairs of translocated chromosomes. The chromosome pairing between 6V#2S and 6V#4S indicates that it will be possible to obtain recombinants and clarify if the PM resistance determinant on one alien chromosome arm is different from that on the other.展开更多
Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit...Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit many desirable traits,such as small flag leaves,a high spikelet number and density,and a compact plant type.An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments.The results showed that a translocation fragment from 2PT-3(2PL)reduced the length of the flag leaves,while translocation fragments from 2PT-3(2PL)and 2PT-5(2PL(0.60–1.00))reduced the width of the flag leaves.A translocation fragment from 2PT-13(2PS(0.18–0.36))increased the length and area of the flag leaves.Translocation fragments from 2PT-3(2PL)and 2PT-8(2PL(0.86–1.00))increased the density of spikelets.Translocation fragments from 2PT-7(2PL(0.00–0.09)),2PT-8(2PL(0.86–1.00)),2PT-10(2PS),and 2PT-13(2PS(0.18–0.36))reduced plant height.This study provides a scientific basis for the effective utilization of wheat–A.cristatum translocation lines.展开更多
Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f.sp.tritici prevalent in China.To elucidate the genetic basis ...Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f.sp.tritici prevalent in China.To elucidate the genetic basis of the resistance,the segregating populations were developed from the cross between V3 and susceptible genotype Mingxian 169,seedlings of the parents and F 2 progeny were tested with six prevalent pathotypes,including CYR29,CYR31,CYR32-6,CYR33,Sun11-4,and Sun11-11,F 1 plants and F 3 lines were also inoculated with Sun11-11 to confirm the result further.The genetic studied results showed that the resistance of V3 against CYR29 was conferred by two dominant genes,independently,one dominant gene and one recessive gene conferring independently or a single dominant gene to confer resistance to CYR31,two complementary dominant genes conferring resistance to both CYR32-6 and Sun11-4,two independently dominant genes or three dominant genes(two of the genes show cumulative effect) conferring resistance to CYR33,a single dominant gene for resistance to Sun11-11.Resistance gene analog polymorphism(RGAP) and simple-sequence repeat(SSR) techniques were used to identify molecular markers linked to the single dominant gene(temporarily designated as YrV3) for resistance to Sun11-11.A linkage map of 2 RGAP and 7 SSR markers was constructed for the dominant gene using data from 221 F 2 plants and their derived F 2:3 lines tested with Sun11-11 in the greenhouse.Amplification of the complete set of nulli-tetrasomic lines of Chinese Spring with a RGAP marker RG1 mapped the gene on the chromosome 1B,and then the linked 7 SSR markers located this gene on the long arm of chromosome 1B.The linkage map spanned a genetic distance of 25.0 cM,the SSR markers Xgwm124 and Xcfa2147 closely linked to YrV3 with genetic distances of 3.0 and 3.8 cM,respectively.Based on the linkage map,it concluded that the resistance gene YrV3 was located on chromosome arm 1BL.Given chromosomal location,the reaction patterns and pedigree analysis,YrV3 should be a novel gene for resistance to stripe rust in wheat.These closely linked markers should be useful in stacking genes from different sources for wheat breeding and diversification of resistance genes against stripe rust.展开更多
Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye ...Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye derivatives,designated JS016 and JS110,were produced by crossing common wheat cultivar Yangmai 23 with Pakistani rye accession W2A.Using sequential genomic in situ hybridization(GISH)and multicolor fluorescence in situ hybridization(mc-FISH),JS016 and JS110 were identified as a T6BS.6RL translocation line and a T6BS.6BL6RL translocation line,respectively.Ten newly 6RL chromosome arm-specific markers were developed and used to confirm the 6RL translocation.The wheat 55K single-nucleotide polymorphism(SNP)array further verified the molecular cytogenetic identification results above and clarified their breakpoints at 430.9 and 523.0 Mb of chromosome 6B in JS016 and JS110,respectively.Resistance spectrum and allelism test demonstrated that JS016 and JS110 possessed novel powdery mildew resistance gene(s)that was derived from the 6RL translocation but differed from Pm20.Moreover,JS016 and JS110 had better agronomic traits than the previously reported 6RL translocation line carrying Pm20.To efficiently transfer and detect the 6RL translocation from JS016 and JS110,one 6RL-specific Kompetitive allele specific PCR(KASP)marker was developed and validated in high throughput marker-assisted selection(MAS).展开更多
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, with the majority of cases being of precursor B-cell phenoltype. Conventional cytogenetic analysis plays an important role in the diagnosis...Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, with the majority of cases being of precursor B-cell phenoltype. Conventional cytogenetic analysis plays an important role in the diagnosis of B-cell ALL, identifying characteristic chromosomal abnormalities associated with a given prognosis therein facilitating optimized treatment. The more recent introduction of microarray technology to the analysis of B-cell ALL has afforded both higher resolution for the detection of known abnormalities and an ability to identify novel copy number abnormalities (CNAs) with potential clinical relevance. In the current study, microarray analysis was performed on 20 cytogenetically abnormal B-cell ALL cases (10 pediatric and 10 adult), while a novel microarray-based balanced-translocation detection methodology (translocation CGH or tCGH) was applied to that subset of cases with a known or suspected recurrent balanced translocation. Standard microarray analysis identified that CNAs was not detected by previous conventional cytogenetics in 75% (15/20) cases. tCGH identified 9/9 (100%) balanced translocations defining BCR/ABL1 (x4), ETV6/RUNX1 (x3), and MLL/AFF1 (x2) breakpoints with high resolution. The results illustrate the improved molecular detail afforded by these technologies and a comparison of translocation breakpoints, CNAs and patient age offers new insights into tumor biology with potential prognostic significance.展开更多
We report one case of pediatric acute myeloid leukemia type 2(AML-M2) who presented with karyotypic aberration of trisomy 21 with the t(5;11) chromosomal translocation. The patient achieved complete remission afte...We report one case of pediatric acute myeloid leukemia type 2(AML-M2) who presented with karyotypic aberration of trisomy 21 with the t(5;11) chromosomal translocation. The patient achieved complete remission after two cycles of chemotherapy of daunorubicin, cytarabine and etoposide. Then, follow-up cytogenetic analysis from bone marrow cell cultures demonstrated a normal karyotype of 46, XY. After 9 years, the patient relapsed and the karyotypic abnormalities of trisomy 21 with t(5;11) reappeared. It was concluded that trisomy 21 with t(5; 11) is a new unfavorable cytogenetic aberration in AML-M2.展开更多
Liver cancer,primarily hepatocellular carcinoma,remains a global health challenge with rising incidence and limited therapeutic options.Genetic factors play a pivotal role in the development and progression of liver c...Liver cancer,primarily hepatocellular carcinoma,remains a global health challenge with rising incidence and limited therapeutic options.Genetic factors play a pivotal role in the development and progression of liver cancer.This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer.We discuss the genetic underpinnings of liver cancer,emphasizing the critical role of risk-associated genetic variants,somatic mutations,and epigenetic alterations.We also explore the intricate interplay between environmental factors and genetics,highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy,and advancements in high-throughput sequencing technologies.By synthesizing the latest research findings,we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer,shedding light on their potential to revolutionize early detection,risk assessment,and targeted therapies in the fight against this devastating disease.展开更多
The purpose of the present paper is to study and develop indicators and procedures for the evaluation of genetic structure changes in germplasm conservation due to social and natural environment reasons. Some basic ...The purpose of the present paper is to study and develop indicators and procedures for the evaluation of genetic structure changes in germplasm conservation due to social and natural environment reasons. Some basic concepts in germplasm study were introduced at first. Then, six kinds of indicators for genetic diversity as a measure of genetic potential of a germplasm collection were presented, i.e., numbers of different entities at certain level, evenness of the entity distribution, genetic similarity and genetic distance, genetic variance and genetic coefficient of variation, multivariate genetic variation indices, and coefficient of parentage. It was pointed out that genetic dispersion did not provide a complete concept of genetic diversity if without any information from genetic richness. Based on the above, the indicators for genetic erosion as the genetic structure changes of germplasm conservation due to social reasons, the indicators of genetic vulnerability as the genetic structure changes of germplasm conservation due to environmental stresses, the measurement of genetic drift and genetic shift as the genetic structure changes of germplasm collection during reproduction or seed increase were reviewed and developed. Furthermore, the estimation procedures of the indicators by using molecular markers were suggested. Finally, the case studies on suitable conservation sample size of self-pollinated and open-pollinated populations were given for reference.展开更多
Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progre...Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progressive disturbances in the fetal or neonatal brain.These disturbances severely impact the child’s daily life and impose a substantial economic burden on the family.Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes,the unde rstanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity.This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development.It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development,which can be further influenced by environmental fa ctors.Des pite continuous research endeavors,the underlying fa ctors contributing to cerebral palsy remain are still elusive.However,significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development.Moreove r,these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping,including thrombosis,angiogenesis,mitochondrial and oxidative phosphorylation function,neuronal migration,and cellular autophagy.Furthermore,exploring targeted genotypes holds potential for precision treatment.In conclusion,advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy.These breakthroughs have the potential to pave the way for new treatments and therapies,consequently shaping the future of cerebral palsy research and its clinical management.The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies.By elucidating the underlying cellular mechanisms,we can develop to rgeted interventions to optimize outcomes.A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy.展开更多
Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-st...Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.展开更多
Diversity information mining about a crop for different attributes is an essential step for effective breeding programs.The present investigation evaluates the quantum of genetic variability and determines the relatio...Diversity information mining about a crop for different attributes is an essential step for effective breeding programs.The present investigation evaluates the quantum of genetic variability and determines the relationship among the important agro-economic traits based on two years of phenotypic data of 210 accessions of linseed.The traits,capsule weight per plant,capsule per plant,husk weight per plant,and seed weight per plant exhibited comparatively higher genetic coefficient of variation(GCV)and phenotypic coefficient of variation(PCV).In contrast,oil content and seed per capsule exhibited a lower value.The high magnitude of broad sense heritability was observed for all traits except seeds per capsule and husk weight per plant.The trait,capsules per plant,plant height,and days to 50%flowering showed high genetic advance coupled with high heritability.Hierarchical cluster analysis grouped 210 accessions into six distinct clusters.Out of 210,144(68.57%)accessions were grouped into three clusters(I,II,and III),in which cluster-III was the largest,containing 64 accessions followed by cluster II and cluster-I.The highest inter-cluster distance was observed between clusters-I and V(127.85),while the lowest was between clusters-II and IV(27.09).The positive correlation of capsule weight per plant with the seed weight per plant and a negative correlation with the days to 50%flowering indicates that high yielding linseed varieties with early flowering/maturity could be developed through direct and indirect selection.Further,seed yield and oil content could be enhanced together as indicated by ghe positive association among these two important traits.In this study,high yielding accessions with moderate to high oil content such as GP36,GP31,GP14,GP54,GP26,GP24,GP34,GP21,GP37 and GP27 and early flowering(less than 70 days)accessions such as GP2,GP26,GP27,CG33,CG44,CG42,CG132,and CG31 identified as potential genetic materials that could be exploited for developing early maturing varieties with high yield.In addition,information’s on various genetic parameters will help breeders to devise suitable breeding methodology for linseed genetic improvement for targeted traits.展开更多
Objective To systematically summarize the published literature on the genetic variants associated with nonalcoholic fatty liver disease(NAFLD).Methods Literature from Web of Science,PubMed,and Embase between January 1...Objective To systematically summarize the published literature on the genetic variants associated with nonalcoholic fatty liver disease(NAFLD).Methods Literature from Web of Science,PubMed,and Embase between January 1980 and September 2022 was systematically searched.Meta-analyses of the genetic variants were conducted using at least five data sources.The epidemiologic credibility of the significant associations was graded using the Venice criteria.Results Based on literature screening,399 eligible studies were included,comprising 381 candidate gene association,16 genome-wide association,and 2 whole-exome sequencing studies.We identified 465 genetic variants in 173 genes in candidate gene association studies,and 25 genetic variants in 17 genes were included in the meta-analysis.The meta-analysis identified 11 variants in 10 genes that were significantly associated with NAFLD,with cumulative epidemiological evidence of an association graded as strong for two variants in two genes(HFE,TNF),moderate for four variants in three genes(TM6SF2,GCKR,and ADIPOQ),and weak for five variants in five genes(MBOAT7,PEMT,PNPLA3,LEPR,and MTHFR).Conclusion This study identified six variants in five genes that had moderate to strong evidence of an association with NAFLD,which may help understand the genetic architecture of NAFLD risk.展开更多
To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening m...To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.展开更多
Examining age-specific heterogeneity of susceptibility to cardiovascular disease is also essential in individuals without prediabetes to determine its relative size and direction compared to those with prediabetes.Of ...Examining age-specific heterogeneity of susceptibility to cardiovascular disease is also essential in individuals without prediabetes to determine its relative size and direction compared to those with prediabetes.Of particular interest,age-specific heterogeneity in genetic susceptibility may exhibit opposite directions depending on the presence or absence of prediabetes.展开更多
Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental...Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.展开更多
Recent advancements in next generation sequencing have allowed for genetic information become more readily available in the clinical setting for those affected by cancer and by treating clinicians.Given the lack of ac...Recent advancements in next generation sequencing have allowed for genetic information become more readily available in the clinical setting for those affected by cancer and by treating clinicians.Given the lack of access to geneticists,medical oncologists and other treating physicians have begun ordering and interpreting genetic tests for individuals with cancer through the process of"mainstreaming".While this process has allowed for quicker access to genetic tests,the process of"mainstreaming"has also brought several challenges including the dissemination of variants of unknown significance results,ordering of appropriate tests,and accurate interpretation of genetic results with appropriate followup testing and interventions.In this editorial,we seek to explore the process of informed consent of individuals before obtaining genetic testing and offer potential solutions to optimize the informed consent process including categorization of results as well as a layered consent model.展开更多
Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China.Methods This study included individuals ...Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China.Methods This study included individuals aged 28 days–85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA.Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0–1 year,and RVA is the key pathogen circulating in patients 6–10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains.Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.展开更多
Analysis of genetic main effects and genotype x environment (GE) interaction effects for brown rice weight (BRW) at four different filling stages in indica lice (Oryza sativa L.) was conducted for two-year experimenta...Analysis of genetic main effects and genotype x environment (GE) interaction effects for brown rice weight (BRW) at four different filling stages in indica lice (Oryza sativa L.) was conducted for two-year experimental data by using developmental genetic models and corresponding statistical approaches for quantitative traits of seeds in cereal crops. It was indicated that the genetic main effects and their GE interaction effects of triploid endosperm, cytoplasmic and diploid maternal plant genes were important for BRW at different filling stages of rice, especially for endosperm or maternal additive main effects and their additive interaction effects. Because of the higher additive effects and additive interaction effects for BRW at different filling stages, the better improving effects for this trait could be expected by selection in rice breeding. The results of conditional genetic variance components showed that the new expression of quantitative genes in endosperm and maternal plant for BRW was mostly found at all different filling stages of rice. The gene expression, however, was most active at the early filling stages especially for the first (1-7 d) and the second filling stages (8-14 d after flowering). The phenomena that some genes were spasmodically expressible among filling stages of rice were detected for some genetic effects especially for net cytoplasmic main effects or its interaction effects and net dominance main effects. Predicted genetic effects at different filling stages of rice showed that some parents such as V20 and Zuo 5 were better than others for improving the BRW.展开更多
BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings.Recent advancements in genetic and epigenetic research have provided ...BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings.Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD,influencing both diagnosis and therapeutic strategies.AIM To explore the genetic architecture of ASD,elucidate mechanistic insights into genetic mutations,and examine gene-environment interactions.METHODS A comprehensive systematic review was conducted,integrating findings from studies on genetic variations,epigenetic mechanisms(such as DNA methylation and histone modifications),and emerging technologies[including Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)-Cas9 and single-cell RNA sequencing].Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar.RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD,yet many cases remain unexplained by known factors,suggesting undiscovered genetic components.Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving.Epigenetic modifications,particularly DNA methylation and non-coding RNAs,also play significant roles in ASD pathogenesis.Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data.CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments.Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice.Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies,ultimately enhancing outcomes for individuals affected by ASD.展开更多
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist...The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.展开更多
基金financially supported by the National Key Research and Development Program,China (2016YFD0102000) the Agricultural Science and Technology Innovation Program (ASTIP) of the CAAS
文摘T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding behavior remains unclear. Results in this study indicated that the pairing frequency rate of the two differently originated 6VS chromosomes in their F1 hybrid was 18.9% according to genomic in situ hybridization (GISH); the PM resistance plants in the F2 generation from the cross between T6V#4S·6DL translocation line Pm97033 and its PM susceptible wheat variety Wan7107 was fewer than expected. However, the ratio of the resistant vs. the susceptible plants of 15:1 in the F2 generation derived from the cross between the two translocation lines of T6V#2S·6AL and T6V#4S·6DL fitted well. Plants segregation ratio (homozygous:heterozygous:lacking) revealed by molecular marker for T6V#4S·6DL or T6V#2S·6AL in their F2 populations fitted the expected values of 1:2:1 well, inferring that the pairing of the two alien chromosome arms facilitates the transmission of T6V#4S·6DL from the F1 to the F2 generation. A quadrivalent was also observed in 21% of pollen mother cells (PMCs) of homozygote plants containing the two pairs of translocated chromosomes. The chromosome pairing between 6V#2S and 6V#4S indicates that it will be possible to obtain recombinants and clarify if the PM resistance determinant on one alien chromosome arm is different from that on the other.
基金supported by grants from the National Natural Science Foundation of China(32272083)the National Key Research and Development Program of China(2016YFD0100102).
文摘Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit many desirable traits,such as small flag leaves,a high spikelet number and density,and a compact plant type.An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments.The results showed that a translocation fragment from 2PT-3(2PL)reduced the length of the flag leaves,while translocation fragments from 2PT-3(2PL)and 2PT-5(2PL(0.60–1.00))reduced the width of the flag leaves.A translocation fragment from 2PT-13(2PS(0.18–0.36))increased the length and area of the flag leaves.Translocation fragments from 2PT-3(2PL)and 2PT-8(2PL(0.86–1.00))increased the density of spikelets.Translocation fragments from 2PT-7(2PL(0.00–0.09)),2PT-8(2PL(0.86–1.00)),2PT-10(2PS),and 2PT-13(2PS(0.18–0.36))reduced plant height.This study provides a scientific basis for the effective utilization of wheat–A.cristatum translocation lines.
基金supported by the 111 Project from the Education Ministry of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of the Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)
文摘Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f.sp.tritici prevalent in China.To elucidate the genetic basis of the resistance,the segregating populations were developed from the cross between V3 and susceptible genotype Mingxian 169,seedlings of the parents and F 2 progeny were tested with six prevalent pathotypes,including CYR29,CYR31,CYR32-6,CYR33,Sun11-4,and Sun11-11,F 1 plants and F 3 lines were also inoculated with Sun11-11 to confirm the result further.The genetic studied results showed that the resistance of V3 against CYR29 was conferred by two dominant genes,independently,one dominant gene and one recessive gene conferring independently or a single dominant gene to confer resistance to CYR31,two complementary dominant genes conferring resistance to both CYR32-6 and Sun11-4,two independently dominant genes or three dominant genes(two of the genes show cumulative effect) conferring resistance to CYR33,a single dominant gene for resistance to Sun11-11.Resistance gene analog polymorphism(RGAP) and simple-sequence repeat(SSR) techniques were used to identify molecular markers linked to the single dominant gene(temporarily designated as YrV3) for resistance to Sun11-11.A linkage map of 2 RGAP and 7 SSR markers was constructed for the dominant gene using data from 221 F 2 plants and their derived F 2:3 lines tested with Sun11-11 in the greenhouse.Amplification of the complete set of nulli-tetrasomic lines of Chinese Spring with a RGAP marker RG1 mapped the gene on the chromosome 1B,and then the linked 7 SSR markers located this gene on the long arm of chromosome 1B.The linkage map spanned a genetic distance of 25.0 cM,the SSR markers Xgwm124 and Xcfa2147 closely linked to YrV3 with genetic distances of 3.0 and 3.8 cM,respectively.Based on the linkage map,it concluded that the resistance gene YrV3 was located on chromosome arm 1BL.Given chromosomal location,the reaction patterns and pedigree analysis,YrV3 should be a novel gene for resistance to stripe rust in wheat.These closely linked markers should be useful in stacking genes from different sources for wheat breeding and diversification of resistance genes against stripe rust.
基金supported by the National Natural Science Foundation of China(32171990 and 32072053)Key Research and Development Program of Zhenjiang(NY2021001)+4 种基金State Key Laboratory of Plant Cell and Chromosome Engineering(PCCE-KF-2021-05 and PCCE-KF-2022-07)State Key Laboratory of Crop Biology in Shandong Agricultural University(2021KF01)Natural Science Foundation of the Jiangsu Higher Education institutions of China(21KJB210004)Open Project Funding of State Key Laboratory of Crop Stress Adaptation and Improvement(CX1130A0920014)Key Research and Development Program of Shandong Province(2020CXGC010805).
文摘Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye derivatives,designated JS016 and JS110,were produced by crossing common wheat cultivar Yangmai 23 with Pakistani rye accession W2A.Using sequential genomic in situ hybridization(GISH)and multicolor fluorescence in situ hybridization(mc-FISH),JS016 and JS110 were identified as a T6BS.6RL translocation line and a T6BS.6BL6RL translocation line,respectively.Ten newly 6RL chromosome arm-specific markers were developed and used to confirm the 6RL translocation.The wheat 55K single-nucleotide polymorphism(SNP)array further verified the molecular cytogenetic identification results above and clarified their breakpoints at 430.9 and 523.0 Mb of chromosome 6B in JS016 and JS110,respectively.Resistance spectrum and allelism test demonstrated that JS016 and JS110 possessed novel powdery mildew resistance gene(s)that was derived from the 6RL translocation but differed from Pm20.Moreover,JS016 and JS110 had better agronomic traits than the previously reported 6RL translocation line carrying Pm20.To efficiently transfer and detect the 6RL translocation from JS016 and JS110,one 6RL-specific Kompetitive allele specific PCR(KASP)marker was developed and validated in high throughput marker-assisted selection(MAS).
文摘Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, with the majority of cases being of precursor B-cell phenoltype. Conventional cytogenetic analysis plays an important role in the diagnosis of B-cell ALL, identifying characteristic chromosomal abnormalities associated with a given prognosis therein facilitating optimized treatment. The more recent introduction of microarray technology to the analysis of B-cell ALL has afforded both higher resolution for the detection of known abnormalities and an ability to identify novel copy number abnormalities (CNAs) with potential clinical relevance. In the current study, microarray analysis was performed on 20 cytogenetically abnormal B-cell ALL cases (10 pediatric and 10 adult), while a novel microarray-based balanced-translocation detection methodology (translocation CGH or tCGH) was applied to that subset of cases with a known or suspected recurrent balanced translocation. Standard microarray analysis identified that CNAs was not detected by previous conventional cytogenetics in 75% (15/20) cases. tCGH identified 9/9 (100%) balanced translocations defining BCR/ABL1 (x4), ETV6/RUNX1 (x3), and MLL/AFF1 (x2) breakpoints with high resolution. The results illustrate the improved molecular detail afforded by these technologies and a comparison of translocation breakpoints, CNAs and patient age offers new insights into tumor biology with potential prognostic significance.
文摘We report one case of pediatric acute myeloid leukemia type 2(AML-M2) who presented with karyotypic aberration of trisomy 21 with the t(5;11) chromosomal translocation. The patient achieved complete remission after two cycles of chemotherapy of daunorubicin, cytarabine and etoposide. Then, follow-up cytogenetic analysis from bone marrow cell cultures demonstrated a normal karyotype of 46, XY. After 9 years, the patient relapsed and the karyotypic abnormalities of trisomy 21 with t(5;11) reappeared. It was concluded that trisomy 21 with t(5; 11) is a new unfavorable cytogenetic aberration in AML-M2.
基金European Union-Next Generation EU,Through the National Recovery and Resilience Plan of the Republic of Bulgaria Project,No.BG-RRP-2.004-0008.
文摘Liver cancer,primarily hepatocellular carcinoma,remains a global health challenge with rising incidence and limited therapeutic options.Genetic factors play a pivotal role in the development and progression of liver cancer.This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer.We discuss the genetic underpinnings of liver cancer,emphasizing the critical role of risk-associated genetic variants,somatic mutations,and epigenetic alterations.We also explore the intricate interplay between environmental factors and genetics,highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy,and advancements in high-throughput sequencing technologies.By synthesizing the latest research findings,we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer,shedding light on their potential to revolutionize early detection,risk assessment,and targeted therapies in the fight against this devastating disease.
基金supported by the National Natural Science Foundation of China(30270805 and 30490250)Doctorate Foundation of Higher Education(20020307028).
文摘The purpose of the present paper is to study and develop indicators and procedures for the evaluation of genetic structure changes in germplasm conservation due to social and natural environment reasons. Some basic concepts in germplasm study were introduced at first. Then, six kinds of indicators for genetic diversity as a measure of genetic potential of a germplasm collection were presented, i.e., numbers of different entities at certain level, evenness of the entity distribution, genetic similarity and genetic distance, genetic variance and genetic coefficient of variation, multivariate genetic variation indices, and coefficient of parentage. It was pointed out that genetic dispersion did not provide a complete concept of genetic diversity if without any information from genetic richness. Based on the above, the indicators for genetic erosion as the genetic structure changes of germplasm conservation due to social reasons, the indicators of genetic vulnerability as the genetic structure changes of germplasm conservation due to environmental stresses, the measurement of genetic drift and genetic shift as the genetic structure changes of germplasm collection during reproduction or seed increase were reviewed and developed. Furthermore, the estimation procedures of the indicators by using molecular markers were suggested. Finally, the case studies on suitable conservation sample size of self-pollinated and open-pollinated populations were given for reference.
基金supported by the National Natural Science Foundation of China,No.U21A20347(to CZ)the National Key Research and Development Program of China,No.2022YFC2704801(to CZ)+1 种基金the Henan Key Laboratory of Population Defects Prevention,No.ZD202103(to YX)the Department of Science and Technology of Henan Province of China,No.212102310221(to YX)。
文摘Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progressive disturbances in the fetal or neonatal brain.These disturbances severely impact the child’s daily life and impose a substantial economic burden on the family.Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes,the unde rstanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity.This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development.It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development,which can be further influenced by environmental fa ctors.Des pite continuous research endeavors,the underlying fa ctors contributing to cerebral palsy remain are still elusive.However,significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development.Moreove r,these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping,including thrombosis,angiogenesis,mitochondrial and oxidative phosphorylation function,neuronal migration,and cellular autophagy.Furthermore,exploring targeted genotypes holds potential for precision treatment.In conclusion,advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy.These breakthroughs have the potential to pave the way for new treatments and therapies,consequently shaping the future of cerebral palsy research and its clinical management.The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies.By elucidating the underlying cellular mechanisms,we can develop to rgeted interventions to optimize outcomes.A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy.
基金the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.
基金supported by the Department of Biotechnology,Government of India,New Delhi.Grant Number-BT/Ag/Network/Linseed/2019-20.
文摘Diversity information mining about a crop for different attributes is an essential step for effective breeding programs.The present investigation evaluates the quantum of genetic variability and determines the relationship among the important agro-economic traits based on two years of phenotypic data of 210 accessions of linseed.The traits,capsule weight per plant,capsule per plant,husk weight per plant,and seed weight per plant exhibited comparatively higher genetic coefficient of variation(GCV)and phenotypic coefficient of variation(PCV).In contrast,oil content and seed per capsule exhibited a lower value.The high magnitude of broad sense heritability was observed for all traits except seeds per capsule and husk weight per plant.The trait,capsules per plant,plant height,and days to 50%flowering showed high genetic advance coupled with high heritability.Hierarchical cluster analysis grouped 210 accessions into six distinct clusters.Out of 210,144(68.57%)accessions were grouped into three clusters(I,II,and III),in which cluster-III was the largest,containing 64 accessions followed by cluster II and cluster-I.The highest inter-cluster distance was observed between clusters-I and V(127.85),while the lowest was between clusters-II and IV(27.09).The positive correlation of capsule weight per plant with the seed weight per plant and a negative correlation with the days to 50%flowering indicates that high yielding linseed varieties with early flowering/maturity could be developed through direct and indirect selection.Further,seed yield and oil content could be enhanced together as indicated by ghe positive association among these two important traits.In this study,high yielding accessions with moderate to high oil content such as GP36,GP31,GP14,GP54,GP26,GP24,GP34,GP21,GP37 and GP27 and early flowering(less than 70 days)accessions such as GP2,GP26,GP27,CG33,CG44,CG42,CG132,and CG31 identified as potential genetic materials that could be exploited for developing early maturing varieties with high yield.In addition,information’s on various genetic parameters will help breeders to devise suitable breeding methodology for linseed genetic improvement for targeted traits.
基金supported by grants from the National Natural Science Foundation of China[No.81872641]Natural Science Foundation of Hunan Province[No.2023JJ40357].
文摘Objective To systematically summarize the published literature on the genetic variants associated with nonalcoholic fatty liver disease(NAFLD).Methods Literature from Web of Science,PubMed,and Embase between January 1980 and September 2022 was systematically searched.Meta-analyses of the genetic variants were conducted using at least five data sources.The epidemiologic credibility of the significant associations was graded using the Venice criteria.Results Based on literature screening,399 eligible studies were included,comprising 381 candidate gene association,16 genome-wide association,and 2 whole-exome sequencing studies.We identified 465 genetic variants in 173 genes in candidate gene association studies,and 25 genetic variants in 17 genes were included in the meta-analysis.The meta-analysis identified 11 variants in 10 genes that were significantly associated with NAFLD,with cumulative epidemiological evidence of an association graded as strong for two variants in two genes(HFE,TNF),moderate for four variants in three genes(TM6SF2,GCKR,and ADIPOQ),and weak for five variants in five genes(MBOAT7,PEMT,PNPLA3,LEPR,and MTHFR).Conclusion This study identified six variants in five genes that had moderate to strong evidence of an association with NAFLD,which may help understand the genetic architecture of NAFLD risk.
基金supported by the Scientific and Technological Innovation 2030 Major Project(2022ZD04019)the Science and Technology Innovation Capacity Building Project of BAAFS(KJCX20230303)+1 种基金Hainan Province Science and Technology Special Fund(ZDYF2023XDNY077)the Beijing Scholars Program(BSP041)。
文摘To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.
基金Supported by National Research Foundation of Korea,No.2018R1A2B6004867.
文摘Examining age-specific heterogeneity of susceptibility to cardiovascular disease is also essential in individuals without prediabetes to determine its relative size and direction compared to those with prediabetes.Of particular interest,age-specific heterogeneity in genetic susceptibility may exhibit opposite directions depending on the presence or absence of prediabetes.
基金supported by Liangzi Lake reservesupported by the International Partnership Program of Chinese Academy of Sciences [Grant number, 152342KYSB20200021]+1 种基金the National Key R and D Program of China [Grant numbers, 2020YFD0900305, 2018YFD0900801]National Natural Science Foundation of China [Grant numbers, 32001107, 32201285, 32101254]
文摘Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.
文摘Recent advancements in next generation sequencing have allowed for genetic information become more readily available in the clinical setting for those affected by cancer and by treating clinicians.Given the lack of access to geneticists,medical oncologists and other treating physicians have begun ordering and interpreting genetic tests for individuals with cancer through the process of"mainstreaming".While this process has allowed for quicker access to genetic tests,the process of"mainstreaming"has also brought several challenges including the dissemination of variants of unknown significance results,ordering of appropriate tests,and accurate interpretation of genetic results with appropriate followup testing and interventions.In this editorial,we seek to explore the process of informed consent of individuals before obtaining genetic testing and offer potential solutions to optimize the informed consent process including categorization of results as well as a layered consent model.
基金funded by the grant National Key R&D Program of China(2017ZX10103011-004 and 2018YFC1603804)the Science and Technology Program of Guangdong Province(2018B020207013 and 2019B030316013).
文摘Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China.Methods This study included individuals aged 28 days–85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA.Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0–1 year,and RVA is the key pathogen circulating in patients 6–10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains.Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.
文摘Analysis of genetic main effects and genotype x environment (GE) interaction effects for brown rice weight (BRW) at four different filling stages in indica lice (Oryza sativa L.) was conducted for two-year experimental data by using developmental genetic models and corresponding statistical approaches for quantitative traits of seeds in cereal crops. It was indicated that the genetic main effects and their GE interaction effects of triploid endosperm, cytoplasmic and diploid maternal plant genes were important for BRW at different filling stages of rice, especially for endosperm or maternal additive main effects and their additive interaction effects. Because of the higher additive effects and additive interaction effects for BRW at different filling stages, the better improving effects for this trait could be expected by selection in rice breeding. The results of conditional genetic variance components showed that the new expression of quantitative genes in endosperm and maternal plant for BRW was mostly found at all different filling stages of rice. The gene expression, however, was most active at the early filling stages especially for the first (1-7 d) and the second filling stages (8-14 d after flowering). The phenomena that some genes were spasmodically expressible among filling stages of rice were detected for some genetic effects especially for net cytoplasmic main effects or its interaction effects and net dominance main effects. Predicted genetic effects at different filling stages of rice showed that some parents such as V20 and Zuo 5 were better than others for improving the BRW.
文摘BACKGROUND Autism spectrum disorder(ASD)is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings.Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD,influencing both diagnosis and therapeutic strategies.AIM To explore the genetic architecture of ASD,elucidate mechanistic insights into genetic mutations,and examine gene-environment interactions.METHODS A comprehensive systematic review was conducted,integrating findings from studies on genetic variations,epigenetic mechanisms(such as DNA methylation and histone modifications),and emerging technologies[including Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)-Cas9 and single-cell RNA sequencing].Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar.RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD,yet many cases remain unexplained by known factors,suggesting undiscovered genetic components.Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving.Epigenetic modifications,particularly DNA methylation and non-coding RNAs,also play significant roles in ASD pathogenesis.Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data.CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments.Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice.Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies,ultimately enhancing outcomes for individuals affected by ASD.
基金This research was financially supported by the Natural Science Basic Research Program of Shaanxi,China(2022JM-126)the National Natural Science Foundation of China(52079132).
文摘The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.