The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy...The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.展开更多
采用蒙特卡罗粒子输运计算程序(Monte Carlo N-partical transport code,MCNP),就中子源屏蔽体和中子源室结构对屏蔽体不同探测位置的中子透射和反射情况进行了计算机模拟计算。计算采用的入射粒子分别为14 MeV和5 MeV的单能中子以及25...采用蒙特卡罗粒子输运计算程序(Monte Carlo N-partical transport code,MCNP),就中子源屏蔽体和中子源室结构对屏蔽体不同探测位置的中子透射和反射情况进行了计算机模拟计算。计算采用的入射粒子分别为14 MeV和5 MeV的单能中子以及252Cf自发裂变中子。从计算结果看,屏蔽体的尺寸和结构对中子透射的影响都比较明显;源室的结构和地坑也对本底产生较大影响。通过理论计算可以了解屏蔽体结构和源室情况对测量本底的影响,可为源室设计以及中子实验研究提供重要参考。展开更多
基金Supported by the National Key Research and Development Plan(2016YFA0401603)the National Natural Science Foundation of China(11675155,11790321)Foundation of President of China Academy of Engineering Physics(YZJLX2016003)。
文摘The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.
文摘采用蒙特卡罗粒子输运计算程序(Monte Carlo N-partical transport code,MCNP),就中子源屏蔽体和中子源室结构对屏蔽体不同探测位置的中子透射和反射情况进行了计算机模拟计算。计算采用的入射粒子分别为14 MeV和5 MeV的单能中子以及252Cf自发裂变中子。从计算结果看,屏蔽体的尺寸和结构对中子透射的影响都比较明显;源室的结构和地坑也对本底产生较大影响。通过理论计算可以了解屏蔽体结构和源室情况对测量本底的影响,可为源室设计以及中子实验研究提供重要参考。