Caching popular content in the storage of small cells is deemed as an efficient way to decrease latency, offload backhaul and satisfy user's demands. In order to investigate the performance of cache-enabled small cel...Caching popular content in the storage of small cells is deemed as an efficient way to decrease latency, offload backhaul and satisfy user's demands. In order to investigate the performance of cache-enabled small cell networks, coverage probability is studied in both single-point transmission and cooperative multipoint(Co MP) transmission scenarios. Meanwhile, the caching distribution modeled as Zipf and uniform distribution are both considered. Assuming that small base stations(SBSs) are distributed as a homogeneous Poisson point process(HPPP), the closed-form expressions of coverage probability are derived in different transmission cases. Simulation results show that Co MP transmission achieves a higher coverage probability than that of single-point transmission. Furthermore, Zipf distribution-based caching is more preferable than uniform distribution-based caching in terms of coverage probability.展开更多
基金supported by National Natural Science Foundation of China (61302081)the National Hi-Tech Research and Development Program of China (2014AA01A701)
文摘Caching popular content in the storage of small cells is deemed as an efficient way to decrease latency, offload backhaul and satisfy user's demands. In order to investigate the performance of cache-enabled small cell networks, coverage probability is studied in both single-point transmission and cooperative multipoint(Co MP) transmission scenarios. Meanwhile, the caching distribution modeled as Zipf and uniform distribution are both considered. Assuming that small base stations(SBSs) are distributed as a homogeneous Poisson point process(HPPP), the closed-form expressions of coverage probability are derived in different transmission cases. Simulation results show that Co MP transmission achieves a higher coverage probability than that of single-point transmission. Furthermore, Zipf distribution-based caching is more preferable than uniform distribution-based caching in terms of coverage probability.