期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Imaging Transparent Objects in a Turbid Medium Using a Femtosecond Optical Kerr Gate 被引量:1
1
作者 Yi-Peng Zheng Jin-Hai Si +3 位作者 Wen-Jiang Tan Xiao-Jing Liu Jun-Yi Tong Xun Hou 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期49-51,共3页
A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the bal... A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the ballistic photons with different optical path lengths, the thickness distribution of the object is mapped, and the maximum is less than 3.6%. This time-resolved ballistic imaging has potential applications in studying properties of the liquid core in the near field of the fuel spray. 展开更多
关键词 imaging Transparent Objects in a Turbid Medium Using a Femtosecond Optical Kerr Gate
下载PDF
Transparent Object Reconstruction Based on Compressive Sensing and Super-Resolution Convolutional Neural Network 被引量:2
2
作者 Anumol MATHAI Li MENGDI +2 位作者 Stephen LAU Ningqun GUO Xin WANG 《Photonic Sensors》 SCIE EI CSCD 2022年第4期24-35,共12页
The detection and reconstruction of transparent objects have remained challenging due to the absence of their features and variations in the local features with variations in illumination.In this paper,both compressiv... The detection and reconstruction of transparent objects have remained challenging due to the absence of their features and variations in the local features with variations in illumination.In this paper,both compressive sensing(CS)and super-resolution convolutional neural network(SRCNN)techniques are combined to capture transparent objects.With the proposed method,the transparent object’s details are extracted accurately using a single pixel detector during the surface reconstruction.The resultant images obtained from the experimental setup are low in quality due to speckles and deformations on the object.However,the implemented SRCNN algorithm has obviated the mentioned drawbacks and reconstructed images visually plausibly.The developed algorithm locates the deformities in the resultant images and improves the image quality.Additionally,the inclusion of compressive sensing minimizes the measurements required for reconstruction,thereby reducing image post-processing and hardware requirements during network training.The result obtained indicates that the visual quality of the reconstructed images has increased from a structural similarity index(SSIM)value of 0.2 to 0.53.In this work,we demonstrate the efficiency of the proposed method in imaging and reconstructing transparent objects with the application of a compressive single pixel imaging technique and improving the image quality to a satisfactory level using the SRCNN algorithm. 展开更多
关键词 Transparent object imaging single-pixel imaging compressive sensing total-variation minimization SRCNN algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部