Transplutonium isotopes are scarce and need to be produced by irradiation in high flux reactors.However,their production is inefficient,and optimization studies are necessary.This study analyzes the physical nature of...Transplutonium isotopes are scarce and need to be produced by irradiation in high flux reactors.However,their production is inefficient,and optimization studies are necessary.This study analyzes the physical nature of transplutonium isotope produc-tion using ^(252)Cf,^(244)Cm,^(242)Cm,and ^(238)Pu as examples.Traditional methods based on the Monte Carlo burnup calculation have the limitations of many calculations and cannot analyze the individual energy intervals in detail;thus,they cannot sup-port the refined evaluation,screening,and optimization of the irradiation schemes.After understanding the physical nature and simplifying the complexity of the production process,we propose a rapid diagnostic method for evaluating radiation schemes based on the concepts“single energy interval value(SEIV)”and“energy spectrum total value(ESTV)”.The rapid diagnostic method not only avoids tedious burnup calculations,but also provides a direction for optimization.The optimal irradiation schemes for producing ^(252)Cf,^(244)Cm,^(242)Cm,and ^(238)Pu are determined based on a rapid diagnostic method.Optimal irradiation schemes can significantly improve production efficiency.Compared with the initial scheme,the optimal scheme improved the production efficiency of ^(238)Pu by 7.41 times;^(242)Cm,11.98 times;^(244)Cm,65.20 times;and ^(252)Cf,15.08 times.Thus,a refined analysis of transplutonium isotope production is conducted and provides a theoretical basis for improving production efficiency.展开更多
We reported the synthesis,single crystal structure,and solid-state UV-Vis-NIR spectroscopy of a new transplutonium metal-organic framework(MOFs),Am(H_(2)O)[PO[(C6H4)COO]_(3)],denoted as AmTPO(TPO=tris(4-carboxylphenyl...We reported the synthesis,single crystal structure,and solid-state UV-Vis-NIR spectroscopy of a new transplutonium metal-organic framework(MOFs),Am(H_(2)O)[PO[(C6H4)COO]_(3)],denoted as AmTPO(TPO=tris(4-carboxylphenyl)-phosphineoxide).AmTPO forms a three-dimensional metal-organic framework structure with americium dimers as the secondary building unit.Clear 5f→5f transi-tions attributed to trivalent americium was observed in the absorption spectrum of AmTPO ranging from 300 to 1200 nm.Notably,AmTPO can maintain the crystallinity with no observable structural degradation within several months after being synthesized,re-vealing a long-term radiation resistance of this structure and the potential application of MOFs as a platform for nuclear waste dis-posal.展开更多
基金sponsored by Natural Science Foundation of Shanghai (NO.22ZR1431900)Science and Technology on Reactor System Design Technology Laboratory.
文摘Transplutonium isotopes are scarce and need to be produced by irradiation in high flux reactors.However,their production is inefficient,and optimization studies are necessary.This study analyzes the physical nature of transplutonium isotope produc-tion using ^(252)Cf,^(244)Cm,^(242)Cm,and ^(238)Pu as examples.Traditional methods based on the Monte Carlo burnup calculation have the limitations of many calculations and cannot analyze the individual energy intervals in detail;thus,they cannot sup-port the refined evaluation,screening,and optimization of the irradiation schemes.After understanding the physical nature and simplifying the complexity of the production process,we propose a rapid diagnostic method for evaluating radiation schemes based on the concepts“single energy interval value(SEIV)”and“energy spectrum total value(ESTV)”.The rapid diagnostic method not only avoids tedious burnup calculations,but also provides a direction for optimization.The optimal irradiation schemes for producing ^(252)Cf,^(244)Cm,^(242)Cm,and ^(238)Pu are determined based on a rapid diagnostic method.Optimal irradiation schemes can significantly improve production efficiency.Compared with the initial scheme,the optimal scheme improved the production efficiency of ^(238)Pu by 7.41 times;^(242)Cm,11.98 times;^(244)Cm,65.20 times;and ^(252)Cf,15.08 times.Thus,a refined analysis of transplutonium isotope production is conducted and provides a theoretical basis for improving production efficiency.
基金supported by grants from the National Natural Science Foundation of China(21825601,21790374,21906113,21727801)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘We reported the synthesis,single crystal structure,and solid-state UV-Vis-NIR spectroscopy of a new transplutonium metal-organic framework(MOFs),Am(H_(2)O)[PO[(C6H4)COO]_(3)],denoted as AmTPO(TPO=tris(4-carboxylphenyl)-phosphineoxide).AmTPO forms a three-dimensional metal-organic framework structure with americium dimers as the secondary building unit.Clear 5f→5f transi-tions attributed to trivalent americium was observed in the absorption spectrum of AmTPO ranging from 300 to 1200 nm.Notably,AmTPO can maintain the crystallinity with no observable structural degradation within several months after being synthesized,re-vealing a long-term radiation resistance of this structure and the potential application of MOFs as a platform for nuclear waste dis-posal.