The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)i...The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)is a key component to improve the mechanical properties and durability of concrete.However,the traditional method of concrete material design based on empirical models or comparative tests has become a bottleneck restricting the sustainable development of concrete.The synthesis method,molecular structure and properties of C-S-H were systematically described in this paper;The interface structure and interaction of graphene oxide/calcium silicate hydrate(C-S-H/GO)were discussed.On this basis,the saturated and unsaturated transport characteristics of ions and water molecules in C-S-H/GO nanochannels under the environment of ocean and acid rain were introduced.The contents of this review provide the basis for improving the multi-scale transmission theory and microstructure design of concrete.It has important guiding significance for analyzing and improving the service life of concrete in complex environment.展开更多
In order to study the effect of the parameters such as the energy density and the gas velocity on the transport rate of ions, the applied force and the motion law of charged particles in the electric field of corona d...In order to study the effect of the parameters such as the energy density and the gas velocity on the transport rate of ions, the applied force and the motion law of charged particles in the electric field of corona discharges at atmospheric pressure is investigated in this paper. As a result, when the gas velocity is raised from 1.5 m/s to 25 m/s for an energy density of 0.4 mJ/cmz, the ionic transport rate increases from 5.4 × 10^8/cm^3. s to 8× 10^10/cm^3 .s, which is an increase of over two orders of magnitude. However, in the zones of streamer and glow discharges, the effect of the input energy density and the energy density of gas ionization on the transport rate is below one order of magnitude. In conclusion, the increase of charged particle momentum can be a major factor in raising the transport rate and reducing the volume of the plasma sources.展开更多
基金This work was supported by a Doctoral program of Zhejiang University of science and technology(F701104L08)。
文摘The problems of traditional concrete such as brittleness,poor toughness and short service life of concrete engineering under acid rain or marine environment need to be solved urgently.Hydrated calcium silicate(C-S-H)is a key component to improve the mechanical properties and durability of concrete.However,the traditional method of concrete material design based on empirical models or comparative tests has become a bottleneck restricting the sustainable development of concrete.The synthesis method,molecular structure and properties of C-S-H were systematically described in this paper;The interface structure and interaction of graphene oxide/calcium silicate hydrate(C-S-H/GO)were discussed.On this basis,the saturated and unsaturated transport characteristics of ions and water molecules in C-S-H/GO nanochannels under the environment of ocean and acid rain were introduced.The contents of this review provide the basis for improving the multi-scale transmission theory and microstructure design of concrete.It has important guiding significance for analyzing and improving the service life of concrete in complex environment.
基金supported by National Natural Science Foundation of China (No. 60471036)
文摘In order to study the effect of the parameters such as the energy density and the gas velocity on the transport rate of ions, the applied force and the motion law of charged particles in the electric field of corona discharges at atmospheric pressure is investigated in this paper. As a result, when the gas velocity is raised from 1.5 m/s to 25 m/s for an energy density of 0.4 mJ/cmz, the ionic transport rate increases from 5.4 × 10^8/cm^3. s to 8× 10^10/cm^3 .s, which is an increase of over two orders of magnitude. However, in the zones of streamer and glow discharges, the effect of the input energy density and the energy density of gas ionization on the transport rate is below one order of magnitude. In conclusion, the increase of charged particle momentum can be a major factor in raising the transport rate and reducing the volume of the plasma sources.