Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based ...Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.展开更多
We compared two different strategies to increase the catches oflps typographus (L.), particularly males, in pheromone-baited traps. The first of these strategies, the barrier approach, used alternating pheromone ble...We compared two different strategies to increase the catches oflps typographus (L.), particularly males, in pheromone-baited traps. The first of these strategies, the barrier approach, used alternating pheromone blends, targeting males and females respectively, in closely-spaced traps forming a barrier around forest stands. The second strategy, the single trap approach, used widely-spaced traps that were all baited with the same lure and intended to trap the highest possible numbers of males without compromising trapping of females. In the blend used for the barrier traps targeting primarily males, with a lower percentage of (4S)-cis-verbenol (cV), the (-)-α-pinene was replaced step wise with (+)-limonene at rates of 0%, 1%, 10%, 35%, 60% and 90%. This replacement had no significant effect on the numbers of responding 1. typographus males, but there was a slight effect on the percentage of males caught. In the attractant blend for the barrier traps targeting females, with a higher percentage of cV, the 2-methyl-3-buten-2-ol (MB) was replaced with 1-methoxy-2-propanol (MP) in a similar fashion as for the male-specific blends. The replacement did not significantly affect the catch of females. Thus, it is pos- sible to use the MP in the blend with cV and ipsdienol without significant change in catch efficacy. In the blends for single traps, the (-)-α- pinene was replaced with (+)-limonene and MB with MP. The replacement of (-)-α-pinene had only a slight effect on the percentage of males, but the results suggest that replacing MB with MP in the blend will not significantly reduce trapping efficacy.展开更多
The performance degradation of gate-recessed metal–oxide–semiconductor high electron mobility transistor(MOSHEMT)is compared with that of conventional high electron mobility transistor(HEMT)under direct current(DC)s...The performance degradation of gate-recessed metal–oxide–semiconductor high electron mobility transistor(MOSHEMT)is compared with that of conventional high electron mobility transistor(HEMT)under direct current(DC)stress,and the degradation mechanism is studied.Under the channel hot electron injection stress,the degradation of gate-recessed MOS-HEMT is more serious than that of conventional HEMT devices due to the combined effect of traps in the barrier layer,and that under the gate dielectric of the device.The threshold voltage of conventional HEMT shows a reduction under the gate electron injection stress,which is caused by the barrier layer traps trapping the injected electrons and releasing them into the channel.However,because of defects under gate dielectrics which can trap the electrons injected from gate and deplete part of the channel,the threshold voltage of gate-recessed MOS-HEMT first increases and then decreases as the conventional HEMT.The saturation phenomenon of threshold voltage degradation under high field stress verifies the existence of threshold voltage reduction effect caused by gate electron injection.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11172060 and 31370948)
文摘Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.
基金supported by Slovak Research and Development Agency (APVV-51-P06005 and APVV-27-P05205)the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (2/6153/26)
文摘We compared two different strategies to increase the catches oflps typographus (L.), particularly males, in pheromone-baited traps. The first of these strategies, the barrier approach, used alternating pheromone blends, targeting males and females respectively, in closely-spaced traps forming a barrier around forest stands. The second strategy, the single trap approach, used widely-spaced traps that were all baited with the same lure and intended to trap the highest possible numbers of males without compromising trapping of females. In the blend used for the barrier traps targeting primarily males, with a lower percentage of (4S)-cis-verbenol (cV), the (-)-α-pinene was replaced step wise with (+)-limonene at rates of 0%, 1%, 10%, 35%, 60% and 90%. This replacement had no significant effect on the numbers of responding 1. typographus males, but there was a slight effect on the percentage of males caught. In the attractant blend for the barrier traps targeting females, with a higher percentage of cV, the 2-methyl-3-buten-2-ol (MB) was replaced with 1-methoxy-2-propanol (MP) in a similar fashion as for the male-specific blends. The replacement did not significantly affect the catch of females. Thus, it is pos- sible to use the MP in the blend with cV and ipsdienol without significant change in catch efficacy. In the blends for single traps, the (-)-α- pinene was replaced with (+)-limonene and MB with MP. The replacement of (-)-α-pinene had only a slight effect on the percentage of males, but the results suggest that replacing MB with MP in the blend will not significantly reduce trapping efficacy.
基金the Laboratory Open Fund of Beijing Smart-chip Microelectronics Technology Co.Ltd and the National Natural Science Foundation of China(Grant No.11690042)+1 种基金the Science Challenge Project,China(Grant Nos.TZ2018004 and 12035019)the National Major Scientific Research Instrument Projects,China(Grant No.61727804)。
文摘The performance degradation of gate-recessed metal–oxide–semiconductor high electron mobility transistor(MOSHEMT)is compared with that of conventional high electron mobility transistor(HEMT)under direct current(DC)stress,and the degradation mechanism is studied.Under the channel hot electron injection stress,the degradation of gate-recessed MOS-HEMT is more serious than that of conventional HEMT devices due to the combined effect of traps in the barrier layer,and that under the gate dielectric of the device.The threshold voltage of conventional HEMT shows a reduction under the gate electron injection stress,which is caused by the barrier layer traps trapping the injected electrons and releasing them into the channel.However,because of defects under gate dielectrics which can trap the electrons injected from gate and deplete part of the channel,the threshold voltage of gate-recessed MOS-HEMT first increases and then decreases as the conventional HEMT.The saturation phenomenon of threshold voltage degradation under high field stress verifies the existence of threshold voltage reduction effect caused by gate electron injection.