Vertical GaN power MOSFET is a novel technology that offers great potential for power switching applications.Being still in an early development phase,vertical GaN devices are yet to be fully optimized and require car...Vertical GaN power MOSFET is a novel technology that offers great potential for power switching applications.Being still in an early development phase,vertical GaN devices are yet to be fully optimized and require careful studies to foster their development.In this work,we report on the physical insights into device performance improvements obtained during the development of vertical GaN-on-Si trench MOSFETs(TMOS’s)provided by TCAD simulations,enhancing the dependability of the adopted process optimization approaches.Specifically,two different TMOS devices are compared in terms of transfer-curve hysteresis(H)and subthreshold slope(SS),showing a≈75%H reduction along with a≈30%SS decrease.Simulations allow attributing the achieved improvements to a decrease in the border and interface traps,respectively.A sensitivity analysis is also carried out,allowing to quantify the additional trap density reduction required to minimize both figures of merit.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
The trapping effects of yellow, blue, green, cyan and white sticky traps on adult Bradysia odoriphaga Yang et Zhang were studied in the field during its peak occurrence period. The results showed that yellow sticky tr...The trapping effects of yellow, blue, green, cyan and white sticky traps on adult Bradysia odoriphaga Yang et Zhang were studied in the field during its peak occurrence period. The results showed that yellow sticky trap received the best trapping effect on adult B. odoriphaga, follow by blue and green sticky traps, while cyan and white sticky traps received worse effects. The yellow sticky trap settled at south position was most attractive to adult B. odoriphaga, which had significant differences with tho^e placed at east and north positions (P 〈 0.05 ) ; the yellow sticky trap at hanging height of 0 cm showed significantly higher attractive- ness than those at heights of 20 and 40 cm.展开更多
A pocket coherent population trapping(CPT) atomic magnetometer scheme that uses a vertical cavity surface emitting laser as a light source is proposed and experimentally investigated.Using the differential detecting...A pocket coherent population trapping(CPT) atomic magnetometer scheme that uses a vertical cavity surface emitting laser as a light source is proposed and experimentally investigated.Using the differential detecting magneto–optic rotation effect,a CPT spectrum with the background canceled and a high signal-to-noise ratio is obtained.The experimental results reveal that the sensitivity of the proposed scheme can be improved by half an order,and the ability to detect weak magnetic fields is extended one-fold.Therefore,the proposed scheme is suited to realize a pocket-size CPT magnetometer.展开更多
A dual optical tweezers system, which consists of a doughnut mode optical tweezer (DMOT) with the azimuthally polarised trapping beam and a solid mode optical tweezer (SMOT) with the Gauss trapping beam was constr...A dual optical tweezers system, which consists of a doughnut mode optical tweezer (DMOT) with the azimuthally polarised trapping beam and a solid mode optical tweezer (SMOT) with the Gauss trapping beam was constructed to compare the axial trapping effect of DMOT and SMOT. The long-distance axial trapping of ST68 microbubbles (MBs) achieved by DMOT was more stable than that of SMOT. Moreover the axial trapping force measured using the viscous drag method, was depended on the diameter of the particle, the laser power, and the numerical aperture (NA) of the objective lens. The measurement of the axial trapping force and the acquisition of CCD images of trapping effect confirmed that the DMOT showed excellent axial trapping ability than SMOT. A simple and effective method is developed to improve axial trapping effect using the azimuthally polarized beam as trapping beam. This is helpful for the long-distance manipulating of particles especially polarised biological objects in axial direction.展开更多
The reactive surface area, an important parameter controlling mineral reactions, affects the amount of mineralization trapping of CO2 which affects the long-term CO2 storage. The effect of the reactive surface area on...The reactive surface area, an important parameter controlling mineral reactions, affects the amount of mineralization trapping of CO2 which affects the long-term CO2 storage. The effect of the reactive surface area on the mineralization trapping of CO2 was numerically simulated for CO2 storage in saline aquifers. Three kinds of minerals, including anorthite, calcite and kaolinite, are involved in the mineral reactions. This paper models the relationship between the specific surface area and the grain diameter of anorthite based on experimental data from literature (Brantley and Mellott, 2000). When the reactive surface areas of anorthite and calcite decrease from 838 to 83.8 m^2/m^3, the percentage of mineralization trapping of CO: after 500 years decreases from 11.8% to 0.65%. The amount of dissolved anorthite and the amounts of precipitated kaolinite and calcite decrease significantly when the reactive surface areas ofanorthite and calcite decrease from 838 to 83.8 m2/m3. Calcite is initially dissolved in the brine and then precipitates during the geochemical reactions between CO2-H20 and the minerals. Different reactive surface areas of anorthite and calcite lead to different times from dissolution to precipitation. The pH of the brine decreases with decreasing reactive surface areas of anorthite and calcite which influences the acidity of the saline aquifer. The gas saturation between the upper and lower parts of the saline aquifer increases with decreasing reactive surface areas of anorthite and calcite. The mass density distribution of brine solution shows that the CO2^+brine solution region increases with decreasing reactive surface areas ofanorthite and calcite.展开更多
[ Objective] The aim was to study the control effect of different sex pheromones and trapping lamps against main pests in tobacco. [ Method] Control effect of sex pheromone of different matrix lures and Jiaduo trappin...[ Objective] The aim was to study the control effect of different sex pheromones and trapping lamps against main pests in tobacco. [ Method] Control effect of sex pheromone of different matrix lures and Jiaduo trapping lamp against Spodoptern litura, Helicoverpa assulta and Helicoverpa armigera in tobacco in Teng- chong of Yunnan were determined and compared, and the control cast was evaluated. [Result] The use of insect sex pheromones and insecticidal light traps had certain effect against S. litura and H. armiger. The trapping effect of sex pheromone traps was better than that of Jiaduo trapping lamp, and the PVC matrix lure had better performance than rubber matrix lure, which had strongest capturing capacity, continuous control effect and significant effort against S. litura. The traps with different settled densities and hanging heights also had different trapping effect against S. litura and H. armiger, and the hanging height of 100 - 150 cm from ground was the best; as the cost was considered, the cast of the area with low density of traps was the lowest, which was reduced by over 44% than conventional chemical control area. [ Conclusion] It is safe and effective to use sex pheromone and insecticidal light traps to control S. litura and H. armigera, and it is a green environmental protection biological physical control technology, having extended application prospect in large area.展开更多
Trapping effect in normally-off Al2O3/AlGaN/GaN metal–oxide–semiconductor (MOS) high-electron-mobility transistors (MOS-HEMTs) with post-etch surface treatment was studied in this paper. Diffusion-controlled interfa...Trapping effect in normally-off Al2O3/AlGaN/GaN metal–oxide–semiconductor (MOS) high-electron-mobility transistors (MOS-HEMTs) with post-etch surface treatment was studied in this paper. Diffusion-controlled interface oxidation treatment and wet etch process were adopted to improve the interface quality of MOS-HEMTs. With capacitance–voltage (C–V) measurement, the density of interface and border traps were calculated to be 1.13 × 10^12 cm^−2 and 6.35 × 10^12 cm^−2, effectively reduced by 27% and 14% compared to controlled devices, respectively. Furthermore, the state density distribution of border traps with large activation energy was analyzed using photo-assisted C–V measurement. It is found that irradiation of monochromatic light results in negative shift of C–V curves, which indicates the electron emission process from border traps. The experimental results reveals that the major border traps have an activation energy about 3.29 eV and the change of post-etch surface treatment process has little effect on this major activation energy.展开更多
A new serials of Er^3+/Yb^3+ co-doped tellurite-silicate glasses were prepared by the technique of high-temperature mehing. The thermal stability, absorption spectra, emission spectra and upconversion spectra were m...A new serials of Er^3+/Yb^3+ co-doped tellurite-silicate glasses were prepared by the technique of high-temperature mehing. The thermal stability, absorption spectra, emission spectra and upconversion spectra were measured and investigated. It is found that these kinds of glasses have good thermal stability, broad FWHM and large stimulated emission cross-section. The three upconversion emission at 525, 546, 658 nm, corresponding to the ^2H11/2→^4Ⅰ15/2, ^4S3/2→4^Ⅰ15/2 and ^F9/2→^4Ⅰ15/2 transitions of Dr^3+ ions,展开更多
In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupl...In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.展开更多
Five different trapping treatments, spraying attractant on bottle surface and spraying attractant inside the bottles with 0, 50,100 and 200 mL water, were set to trap Bactrocera dorsalis and B. cucurbitae in guava (P...Five different trapping treatments, spraying attractant on bottle surface and spraying attractant inside the bottles with 0, 50,100 and 200 mL water, were set to trap Bactrocera dorsalis and B. cucurbitae in guava (Psidium guajava) park. The results showed that when the usage of attractant was 1 g, both Haonian and Wende had trapping effect on B. dorsalis and B. cucurbitae. The trapping effect of Haonian on B. dorsalis was better than that of Wende, while their trapping effects on B. cucurbitae was just the opposite. The trapping effects of different treatments had great difference. The trapping effect of Haonian on two species of fruit flies enhanced with the increasing volume of water, and reached the ma^mum value as the water volume was 200 mL. With the increasing volume of water, the trap- ping effect of Wende on two species of fruit flies first increased, and then decreased, which reached the maximum value as the water volume was 50 mL. Different treatments with attractants spraying inside bottles had better trapping effects on two species of fruit flies than that spraying on bottle surface.展开更多
The key application technology for sex pheromone of Grapholitha molesta was studied from the aspects of different hanging heights and orientations, dif- ferent doses and types of traps through the tests on trapping qu...The key application technology for sex pheromone of Grapholitha molesta was studied from the aspects of different hanging heights and orientations, dif- ferent doses and types of traps through the tests on trapping quantity of G. molesta in fields. The results showed that the trapping effect was enhanced when the hanging height was increased, and the trapping effect was the best in west direction. The trapping effect was enhanced when the dosage was increased. When it was up to 6 lures, the trapping effect was the best with 38.75 head/trap; the next was 2 lures with 31.00 head/trap. All types of traps had trapping ability to G. mo- lesta, among which triangle trapper was the best, followed by self-made bottle trap. Their trapping effects were 138.75 and 100.25 head/trap, respectively.展开更多
Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/...Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.展开更多
We derive the coupled nonpolynomial nonlinear Schr6dinger equations for a two-component Bose-Lmstem conaensate in a quasi-one-dimension geometry and investigate the effects of a tightly transverse trapping on the grou...We derive the coupled nonpolynomial nonlinear Schr6dinger equations for a two-component Bose-Lmstem conaensate in a quasi-one-dimension geometry and investigate the effects of a tightly transverse trapping on the ground state and the miscibility-immiscibility threshold. We find that the density profile of the matter wavepacket is remarkably dependent on the transverse width and the effective one-dimension nonlinear coupling strengths in miscible and immiscible regimes.展开更多
The effect of high overdrive voltage on the positive bias temperature instability(PBTI)trapping behavior is investigated for GaN metal–insulator–semiconductor high electron mobility transistor(MIS-HEMT)with LPCVD-Si...The effect of high overdrive voltage on the positive bias temperature instability(PBTI)trapping behavior is investigated for GaN metal–insulator–semiconductor high electron mobility transistor(MIS-HEMT)with LPCVD-SiNx gate dielectric.A higher overdrive voltage is more effective to accelerate the electrons trapping process,resulting in a unique trapping behavior,i.e.,a larger threshold voltage shift with a weaker time dependence and a weaker temperature dependence.Combining the degradation of electrical parameters with the frequency–conductance measurements,the unique trapping behavior is ascribed to the defect energy profile inside the gate dielectric changing with stress time,new interface/border traps with a broad distribution above the channel Fermi level are introduced by high overdrive voltage.展开更多
By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam...By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region.展开更多
[ Objective] The aim was to compare control effects of trapping lamps with different wavelengths on soybean pests. [ Method ] Three kinds of lamps with different wavelengths were used to conduct pest control test in s...[ Objective] The aim was to compare control effects of trapping lamps with different wavelengths on soybean pests. [ Method ] Three kinds of lamps with different wavelengths were used to conduct pest control test in soybean fields. [ Result] The trapping effects of three kinds of lamps with different wavelengths on soybean pests were significantly different. Among them, the trapping effect of No. 2 light with wavelength of 400 -460 nm was significantly better than the other two lamps; No. 1 light with wavelength of 330 -400 nm had no obvious difference in trapping effect with No. 3 light with wavelength of 450 -510 nm. [ Conclusion] The research result provided theoretical basis for popularized application of trapping lamp in production.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons ...The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process.展开更多
The Trapping force on Rayleigh particles in an optical tweezers system with an oil immersion objective is calculated by an electromagnetic model.The results indicate that the stability of particles trapped will be aff...The Trapping force on Rayleigh particles in an optical tweezers system with an oil immersion objective is calculated by an electromagnetic model.The results indicate that the stability of particles trapped will be affected by spherical aberration,which is caused by refractive difference between objective oil and water solution,when the specimen manipulated is suspended in a water solution.The trapping force and depth of potential well will decrease and the minimum of laser power for ensuring the stability of particles trapped will increase with the enhancing trapping depth.展开更多
基金funding from the Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU),under grant agreement No.101007229support from the European Union’s Horizon 2020 Research and Innovation Programme,Germany,France,Belgium,Austria,Sweden,Spain,and Italy
文摘Vertical GaN power MOSFET is a novel technology that offers great potential for power switching applications.Being still in an early development phase,vertical GaN devices are yet to be fully optimized and require careful studies to foster their development.In this work,we report on the physical insights into device performance improvements obtained during the development of vertical GaN-on-Si trench MOSFETs(TMOS’s)provided by TCAD simulations,enhancing the dependability of the adopted process optimization approaches.Specifically,two different TMOS devices are compared in terms of transfer-curve hysteresis(H)and subthreshold slope(SS),showing a≈75%H reduction along with a≈30%SS decrease.Simulations allow attributing the achieved improvements to a decrease in the border and interface traps,respectively.A sensitivity analysis is also carried out,allowing to quantify the additional trap density reduction required to minimize both figures of merit.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303027)
文摘The trapping effects of yellow, blue, green, cyan and white sticky traps on adult Bradysia odoriphaga Yang et Zhang were studied in the field during its peak occurrence period. The results showed that yellow sticky trap received the best trapping effect on adult B. odoriphaga, follow by blue and green sticky traps, while cyan and white sticky traps received worse effects. The yellow sticky trap settled at south position was most attractive to adult B. odoriphaga, which had significant differences with tho^e placed at east and north positions (P 〈 0.05 ) ; the yellow sticky trap at hanging height of 0 cm showed significantly higher attractive- ness than those at heights of 20 and 40 cm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304362 and 61434005)
文摘A pocket coherent population trapping(CPT) atomic magnetometer scheme that uses a vertical cavity surface emitting laser as a light source is proposed and experimentally investigated.Using the differential detecting magneto–optic rotation effect,a CPT spectrum with the background canceled and a high signal-to-noise ratio is obtained.The experimental results reveal that the sensitivity of the proposed scheme can be improved by half an order,and the ability to detect weak magnetic fields is extended one-fold.Therefore,the proposed scheme is suited to realize a pocket-size CPT magnetometer.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10674037)the National Basic Research Program of China (Grant No. 2007CB307001)the program of excellent Team in Harbin Institute of Technology of China
文摘A dual optical tweezers system, which consists of a doughnut mode optical tweezer (DMOT) with the azimuthally polarised trapping beam and a solid mode optical tweezer (SMOT) with the Gauss trapping beam was constructed to compare the axial trapping effect of DMOT and SMOT. The long-distance axial trapping of ST68 microbubbles (MBs) achieved by DMOT was more stable than that of SMOT. Moreover the axial trapping force measured using the viscous drag method, was depended on the diameter of the particle, the laser power, and the numerical aperture (NA) of the objective lens. The measurement of the axial trapping force and the acquisition of CCD images of trapping effect confirmed that the DMOT showed excellent axial trapping ability than SMOT. A simple and effective method is developed to improve axial trapping effect using the azimuthally polarized beam as trapping beam. This is helpful for the long-distance manipulating of particles especially polarised biological objects in axial direction.
基金supported by the National Natural Science Foundation of China (Grant No. 50906043)the Tsinghua University Initiative Scientific Research Program(2009THZ02232)The first author did this study while at Geoscience Australia sponsored by CAGS (China-Australia Geological Storage of CO2Project)
文摘The reactive surface area, an important parameter controlling mineral reactions, affects the amount of mineralization trapping of CO2 which affects the long-term CO2 storage. The effect of the reactive surface area on the mineralization trapping of CO2 was numerically simulated for CO2 storage in saline aquifers. Three kinds of minerals, including anorthite, calcite and kaolinite, are involved in the mineral reactions. This paper models the relationship between the specific surface area and the grain diameter of anorthite based on experimental data from literature (Brantley and Mellott, 2000). When the reactive surface areas of anorthite and calcite decrease from 838 to 83.8 m^2/m^3, the percentage of mineralization trapping of CO: after 500 years decreases from 11.8% to 0.65%. The amount of dissolved anorthite and the amounts of precipitated kaolinite and calcite decrease significantly when the reactive surface areas ofanorthite and calcite decrease from 838 to 83.8 m2/m3. Calcite is initially dissolved in the brine and then precipitates during the geochemical reactions between CO2-H20 and the minerals. Different reactive surface areas of anorthite and calcite lead to different times from dissolution to precipitation. The pH of the brine decreases with decreasing reactive surface areas of anorthite and calcite which influences the acidity of the saline aquifer. The gas saturation between the upper and lower parts of the saline aquifer increases with decreasing reactive surface areas of anorthite and calcite. The mass density distribution of brine solution shows that the CO2^+brine solution region increases with decreasing reactive surface areas ofanorthite and calcite.
基金Supported by Key Project of China National Tobacco Company ( 110201202015)Project of Yunnan Tobacco Company ( 2012YN11)
文摘[ Objective] The aim was to study the control effect of different sex pheromones and trapping lamps against main pests in tobacco. [ Method] Control effect of sex pheromone of different matrix lures and Jiaduo trapping lamp against Spodoptern litura, Helicoverpa assulta and Helicoverpa armigera in tobacco in Teng- chong of Yunnan were determined and compared, and the control cast was evaluated. [Result] The use of insect sex pheromones and insecticidal light traps had certain effect against S. litura and H. armiger. The trapping effect of sex pheromone traps was better than that of Jiaduo trapping lamp, and the PVC matrix lure had better performance than rubber matrix lure, which had strongest capturing capacity, continuous control effect and significant effort against S. litura. The traps with different settled densities and hanging heights also had different trapping effect against S. litura and H. armiger, and the hanging height of 100 - 150 cm from ground was the best; as the cost was considered, the cast of the area with low density of traps was the lowest, which was reduced by over 44% than conventional chemical control area. [ Conclusion] It is safe and effective to use sex pheromone and insecticidal light traps to control S. litura and H. armigera, and it is a green environmental protection biological physical control technology, having extended application prospect in large area.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61704124, 11690042, and 61634005).
文摘Trapping effect in normally-off Al2O3/AlGaN/GaN metal–oxide–semiconductor (MOS) high-electron-mobility transistors (MOS-HEMTs) with post-etch surface treatment was studied in this paper. Diffusion-controlled interface oxidation treatment and wet etch process were adopted to improve the interface quality of MOS-HEMTs. With capacitance–voltage (C–V) measurement, the density of interface and border traps were calculated to be 1.13 × 10^12 cm^−2 and 6.35 × 10^12 cm^−2, effectively reduced by 27% and 14% compared to controlled devices, respectively. Furthermore, the state density distribution of border traps with large activation energy was analyzed using photo-assisted C–V measurement. It is found that irradiation of monochromatic light results in negative shift of C–V curves, which indicates the electron emission process from border traps. The experimental results reveals that the major border traps have an activation energy about 3.29 eV and the change of post-etch surface treatment process has little effect on this major activation energy.
文摘A new serials of Er^3+/Yb^3+ co-doped tellurite-silicate glasses were prepared by the technique of high-temperature mehing. The thermal stability, absorption spectra, emission spectra and upconversion spectra were measured and investigated. It is found that these kinds of glasses have good thermal stability, broad FWHM and large stimulated emission cross-section. The three upconversion emission at 525, 546, 658 nm, corresponding to the ^2H11/2→^4Ⅰ15/2, ^4S3/2→4^Ⅰ15/2 and ^F9/2→^4Ⅰ15/2 transitions of Dr^3+ ions,
基金Project supported by the National Natural Science Foundation of China(Grant No.61306113)
文摘In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest( 201103026-1)
文摘Five different trapping treatments, spraying attractant on bottle surface and spraying attractant inside the bottles with 0, 50,100 and 200 mL water, were set to trap Bactrocera dorsalis and B. cucurbitae in guava (Psidium guajava) park. The results showed that when the usage of attractant was 1 g, both Haonian and Wende had trapping effect on B. dorsalis and B. cucurbitae. The trapping effect of Haonian on B. dorsalis was better than that of Wende, while their trapping effects on B. cucurbitae was just the opposite. The trapping effects of different treatments had great difference. The trapping effect of Haonian on two species of fruit flies enhanced with the increasing volume of water, and reached the ma^mum value as the water volume was 200 mL. With the increasing volume of water, the trap- ping effect of Wende on two species of fruit flies first increased, and then decreased, which reached the maximum value as the water volume was 50 mL. Different treatments with attractants spraying inside bottles had better trapping effects on two species of fruit flies than that spraying on bottle surface.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest( 201103024)
文摘The key application technology for sex pheromone of Grapholitha molesta was studied from the aspects of different hanging heights and orientations, dif- ferent doses and types of traps through the tests on trapping quantity of G. molesta in fields. The results showed that the trapping effect was enhanced when the hanging height was increased, and the trapping effect was the best in west direction. The trapping effect was enhanced when the dosage was increased. When it was up to 6 lures, the trapping effect was the best with 38.75 head/trap; the next was 2 lures with 31.00 head/trap. All types of traps had trapping ability to G. mo- lesta, among which triangle trapper was the best, followed by self-made bottle trap. Their trapping effects were 138.75 and 100.25 head/trap, respectively.
基金Supported by the National Natural Science Foundation of China under Grant No 616340084the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014101+1 种基金the International Cooperation Project of Chinese Academy of Sciencesthe Austrian-Chinese Cooperative R&D Projects under Grant No 172511KYSB20150006
文摘Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.
基金supported by the National Natural Science Foundation of China (Grant No. 11104292)the National Basic Research Program of China (Grant No. 2011CB921504)
文摘We derive the coupled nonpolynomial nonlinear Schr6dinger equations for a two-component Bose-Lmstem conaensate in a quasi-one-dimension geometry and investigate the effects of a tightly transverse trapping on the ground state and the miscibility-immiscibility threshold. We find that the density profile of the matter wavepacket is remarkably dependent on the transverse width and the effective one-dimension nonlinear coupling strengths in miscible and immiscible regimes.
基金Project supported by the National Key Research and Development Program,China(Grant No.2017YFB0402800)the Key Research and Development Program of Guangdong Province,China(Grant No.2019B010128002)+1 种基金the National Natural Science Foundation of China(Grant No.U1601210)the Natural Science Foundation of Guangdong Province,China(Grant No.2015A030312011)。
文摘The effect of high overdrive voltage on the positive bias temperature instability(PBTI)trapping behavior is investigated for GaN metal–insulator–semiconductor high electron mobility transistor(MIS-HEMT)with LPCVD-SiNx gate dielectric.A higher overdrive voltage is more effective to accelerate the electrons trapping process,resulting in a unique trapping behavior,i.e.,a larger threshold voltage shift with a weaker time dependence and a weaker temperature dependence.Combining the degradation of electrical parameters with the frequency–conductance measurements,the unique trapping behavior is ascribed to the defect energy profile inside the gate dielectric changing with stress time,new interface/border traps with a broad distribution above the channel Fermi level are introduced by high overdrive voltage.
基金the support from Chinese Academy of Science(CAS)TWAS for his Ph.D studies at the University of Science and Technology of China in the category of a 2016 CAS-TWAS President’s Fellowship Awardee(Series No.2016-172)+1 种基金partially supported by National Natural Science Foundation of China(Nos.41331067,41774169,and 41527804)the Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-DQC010)
文摘By performing one-dimensional particle-in-cell simulations, the nonlinear effects of electronacoustic(EA) waves are investigated in a multispecies plasma, whose constituents are hot electrons, cold electrons, and beam electrons with immobile neutralized positive ions. Numerical analyses have identified that EA waves with a sufficiently large amplitude tend to trap cold electrons. Because EA waves are dispersive, where the wave modes with different wavenumbers have different phase velocities, the trapping may lead to the mixing of cold electrons. The cold electrons finally get thermalized or heated. The investigation also shows that the excited EA waves give rise to a broad range of wave frequencies, which may be helpful for understanding the broadband-electrostatic-noise spectrum in the Earth’s auroral region.
基金Supported by Project of National Soybean Industrial Technology System ( nycy - 004)
文摘[ Objective] The aim was to compare control effects of trapping lamps with different wavelengths on soybean pests. [ Method ] Three kinds of lamps with different wavelengths were used to conduct pest control test in soybean fields. [ Result] The trapping effects of three kinds of lamps with different wavelengths on soybean pests were significantly different. Among them, the trapping effect of No. 2 light with wavelength of 400 -460 nm was significantly better than the other two lamps; No. 1 light with wavelength of 330 -400 nm had no obvious difference in trapping effect with No. 3 light with wavelength of 450 -510 nm. [ Conclusion] The research result provided theoretical basis for popularized application of trapping lamp in production.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金Project supported by the National Instrumentation Program,China(Grant No.2011YQ040082)the National Natural Science Foundation of China(Grant Nos.61274081,51372205,and 51202197)+1 种基金the National 973 Project of China(Grant No.2011CB610400),the China Postdoctoral Science Foundation(Grant No.2014M550509)the 111 Project of China(Grant No.B08040)
文摘The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process.
基金Supported by the National Natural Science Foundation of China under Grant No.1989380.
文摘The Trapping force on Rayleigh particles in an optical tweezers system with an oil immersion objective is calculated by an electromagnetic model.The results indicate that the stability of particles trapped will be affected by spherical aberration,which is caused by refractive difference between objective oil and water solution,when the specimen manipulated is suspended in a water solution.The trapping force and depth of potential well will decrease and the minimum of laser power for ensuring the stability of particles trapped will increase with the enhancing trapping depth.