期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
中心Holder条件下求解重根的Traub算法的收敛半径
1
作者 刘素珍 《数学的实践与认识》 北大核心 2024年第1期189-197,共9页
目前,人们在泰勒展开式的基础上提出了一种新的估算求解重根的迭代算法收敛半径的方法.这种方法已经估算了牛顿法的收敛半径,以及Osada算法和Halley算法求解重根的收敛半径,但是其计算的收敛半径都比较大.将在中心Holder条件下求解重根... 目前,人们在泰勒展开式的基础上提出了一种新的估算求解重根的迭代算法收敛半径的方法.这种方法已经估算了牛顿法的收敛半径,以及Osada算法和Halley算法求解重根的收敛半径,但是其计算的收敛半径都比较大.将在中心Holder条件下求解重根的Traub算法的收敛半径,并通过具体例子对计算结果进行比较,Traub算法的计算结果明显优于在同等条件下Osada和Halley算法的收敛半径. 展开更多
关键词 非线性方程重根 traub算法 中心H?lder条件
原文传递
Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method
2
作者 HUANGDeshuang CHIZheru 《Science in China(Series F)》 2004年第2期232-245,共14页
This paper proposes a novel recursive partitioning method based on constrained learning neural networks to find an arbitrary number (less than the order of the polynomial) of (real or complex) roots of arbitrary polyn... This paper proposes a novel recursive partitioning method based on constrained learning neural networks to find an arbitrary number (less than the order of the polynomial) of (real or complex) roots of arbitrary polynomials. Moreover, this paper also gives a BP network constrained learning algorithm (CLA) used in root-finders based on the constrained relations between the roots and the coefficients of polynomials. At the same time, an adaptive selection method for the parameter d P with the CLA is also given. The experimental results demonstrate that this method can more rapidly and effectively obtain the roots of arbitrary high order polynomials with higher precision than traditional root-finding approaches. 展开更多
关键词 recursive partitioning method BP neural networks constrained learning algorithm Laguerre method Muller method Jenkins-traub method adaptive parameter selection high order arbitrary polyno-mials real or complex roots.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部