Introduction: A traumatic brain injury (TBI) is caused by a forceful bump, blow, or jolt to the head or body, or by an object that pierces the skull and interrupts the normal function of the brain. Severe TBI is estim...Introduction: A traumatic brain injury (TBI) is caused by a forceful bump, blow, or jolt to the head or body, or by an object that pierces the skull and interrupts the normal function of the brain. Severe TBI is estimated at 73 cases per 100,000 people. The mortality of severe TBI can be reduced if a timely diagnosis and treatment of the injuries are made through prognostic factors. Objective: To determine the prognostic factors related to mortality in severe traumatic brain injury at the Hospital General de Zona No. 46. Material and Methods: Retrospective, cross-sectional and descriptive study in beneficiaries admitted to the Hospital General de Zona (HGZ) No. 46 of the Mexican Institute of Social Security (IMSS by its acronym in Spanish), with a diagnosis of severe TBI;the possible prognostic factors related to mortality of severe TBI were obtained from their records. Measures of central tendency and chi square were used for data analysis. Results: The study sample consisted of 60 subjects diagnosed with severe traumatic brain injury, of which 5 (8%) were women and 55 (92%) were men, and all 60 (100%) patients died. The average age of the sample was 26 with a standard deviation of 9 years. The variables that had a p value less than or equal to 0.05 were: Mydriasis, seizures, Hyperglycemia, Normoglycemia, Hypothermia and Hypotension. This means that these variables were associated with mortality. Conclusion: Statistical significance is demonstrated in prognostic factors of mortality in severe traumatic brain injury with p < 0.05 in the case of mydriasis, seizures, hyperglycemia, normoglycemia, hypothermia and hypotension.展开更多
Calcitonin gene-related peptide(CGRP) has been implicated in multiple functions across many bioprocesses; however, whether CGRP is associated with severe traumatic brain injury(TBI) remains poorly understood. In t...Calcitonin gene-related peptide(CGRP) has been implicated in multiple functions across many bioprocesses; however, whether CGRP is associated with severe traumatic brain injury(TBI) remains poorly understood. In this study, 96 adult patients with TBI(enrolled from September 2015 to December 2016) were divided into a mild/moderate TBI group(36 males and 25 females, aged 38 ± 13 years) and severe TBI group(22 males and 13 females, aged 38 ± 11 years) according to Glasgow Coma Scale scores. In addition, 25 healthy individuals were selected as controls(15 males and 10 females, aged 39 ± 13 years). Radioimmunoassay was used to detect serum levels of CGRP and endothelin-1 at admission and at 12, 24, 48, 72 hours, and 7 days after admission. CGRP levels were remarkably lower, but endothelin-1 levels were obviously higher in the severe TBI group compared with mild/moderate TBI and control groups. Levels of CGRP were remarkably lower, but endothelin-1 levels were obviously higher in deceased patients compared with patients who survived. Survival analysis and logistic regression showed that both CGRP and endothelin-1 levels were associated with patient mortality, with each serving as an independent risk factor for 6-month mortality of severe TBI patients. Moreover, TBI patients with lower serum CGRP levels had a higher risk of death. Thus, our retrospective analysis demonstrates the potential utility of CGRP as a new biomarker, monitoring method, and therapeutic target for TBI.展开更多
The cingulum,the neural tract connecting the orbitofrontal cortex with the medial temporal lobe,plays an important role in cognition(Bush et al.,2000).It is also important in memory because it provides cholinergic i...The cingulum,the neural tract connecting the orbitofrontal cortex with the medial temporal lobe,plays an important role in cognition(Bush et al.,2000).It is also important in memory because it provides cholinergic innervations to the cerebral cortex after obtaining innervation from the medial septal nucleus,the vertical nucleus of the diagonal band, and the nucleus basalis of Meynert via the medial cholinergic pathway (Nieuwenhuys et al., 2008; Naidich and Duvernoy, 2009; Hong and Jang, 2010a).展开更多
Traumatic brain injury(TBI)represents a global pandemic and is currently a leading cause of injury related death worldwide.Unfortunately,those who survive initial injury often suffer devastating functional,social,an...Traumatic brain injury(TBI)represents a global pandemic and is currently a leading cause of injury related death worldwide.Unfortunately,those who survive initial injury often suffer devastating functional,social,and economic consequences.展开更多
Objective: Severe traumatic brain injury (sTBI) is one of the common acute and critical diseases in neurosurgery. So we aim to explore the clinical effectiveness of an intelligent emergency care model in patients with...Objective: Severe traumatic brain injury (sTBI) is one of the common acute and critical diseases in neurosurgery. So we aim to explore the clinical effectiveness of an intelligent emergency care model in patients with severe traumatic brain injury. Methods: Eighty patients with severe traumatic brain injury (sTBI) who were treated in Zhuji People’s Hospital of Zhejiang Province from January 2019 to December 2021 were selected as the study subjects. The patients were divided into an observation group and a control group with 40 patients in each group according to the random number table method. Patients in the control group received conventional first-aid nursing mode intervention, and the intelligent emergency nursing mode was used for the observation group based on the control group. Comparisons were conducted between the two groups on the time of arrival to the emergency room, the time from the emergency room to the operating room, Glasgow Coma Scale (GCS) score before surgery, GCS score when leaving the Intensive Care Unit (ICU), the average length of ICU stay, the average length of hospital stay, the total hospital costs. Results: The time of arrival to the emergency room, the time from the emergency room to the operating room, the average length of ICU stay, the average length of hospital stay, and the total hospital costs in the observation group were significantly lower than those in the control group, and the differences were statistically significant (All P Conclusion: Intelligent emergency nursing mode can shorten the time of sTBI rescue, the length of ICU stay, and the average length of hospital stay, reduce the total hospitalization cost, improve the prognosis, with good efficacy, reduce the total cost of hospitalization, and improve the prognosis with better efficacy.展开更多
Objective To compare the conjoint effect of enteral nutrition (EN) and parenteral nutrition (PN)with single EN or PN on immune function, nutritional status, complications and clinical outcomes of patientswith severe t...Objective To compare the conjoint effect of enteral nutrition (EN) and parenteral nutrition (PN)with single EN or PN on immune function, nutritional status, complications and clinical outcomes of patientswith severe traumatic brain injury (STBI).Methods A prospective randomized control trial was carried out from January 2009 to May 2012 inNeurological Intensive Care Unit (NICU). Patients of STBI who met the enrolment criteria (Glasgow ComaScale score 6~8; Nutritional Risk Screening ≥3) were randomly divided into 3 groups and were administratedEN, PN or EN+PN treatments respectively. The indexes of nutritional status, immune function,complications and clinical outcomes were examined and compared statistically.展开更多
Objective To explore effects of decompressive craniectomy on cerebral blood flow volume and brain metabolism in different aged patients with severe traumatic brain injury. Methods 71 cases were divided into three grou...Objective To explore effects of decompressive craniectomy on cerebral blood flow volume and brain metabolism in different aged patients with severe traumatic brain injury. Methods 71 cases were divided into three groups according age: group A( 【 30 years) ,group B ( 30 ~ 50 years) 。展开更多
Objective To study difference between intravascular cooling system and traditional moderate hypothermia in patients with severe traumatic brain injury. Methods Eighty sTBI patients were randomly divided into intravasc...Objective To study difference between intravascular cooling system and traditional moderate hypothermia in patients with severe traumatic brain injury. Methods Eighty sTBI patients were randomly divided into intravascular hypothermic groups (IVT) and traditional moderate hypothermia groups(HT) . Inclusion criteria included a Glasgow Coma Scale(GCS) score ≤8 and time from injury to admission must be within 12 hours.展开更多
Background:The aim of this work is to detect and compare the peripheral blood mi RNA expression profiles in patients with severe traumatic brain injury(s TBI)2,12,24,48,and 72 h after injury at high altitude and to pr...Background:The aim of this work is to detect and compare the peripheral blood mi RNA expression profiles in patients with severe traumatic brain injury(s TBI)2,12,24,48,and 72 h after injury at high altitude and to predict the target genes of differential expressed mi RNAs.Methods:Twenty s TBI patients from high-altitude areas were randomly selected according to the inclusion and exclusion criteria and were divided into five groups:the 2-h group,12-h group,24-h group,48-h group,and 72-h group.Peripheral blood mi RNA expression profiles were detected using real-time quantitative PCR(q RT-PCR).Results:The expression levels of mi R-18 a,mi R-203,mi R-146 a,mi R-149,mi R-23 b,and mi R-let-7 b in peripheral blood showed significant differences between the 2-h group and the 12-h group.The expression levels of mi R-203,mi R-146 a,mi R-149,mi R-23 b,and mi R-let-7 f in peripheral blood were up-regulated in the 24-h group.In the 48-h group,the expression levels of mi R-181 d,mi R-29 a,and mi R-18 b were upregulated.In the 72-h group,the expression levels of mi R-203,mi R-146 a,mi R-149,mi R-23 b,and mi R-let-7 f changed.The main target genes of the differentiation expressed mi RNAs were genes that regulate inflammatory responses,apoptosis,and DNA damage/repair.Conclusions:mi RNAs may be involved in the pathogenesis of s TBI by dynamically regulating the target genes that regulate inflammatory responses,apoptosis,and DNA damage/repair pathways.展开更多
Objective To explore quantitative electroencephalography in unconscious patients after severe traumatic brain injury (TBI) to predict awakening. Methods All cases were divided into two groups(the awake group 19 cases ...Objective To explore quantitative electroencephalography in unconscious patients after severe traumatic brain injury (TBI) to predict awakening. Methods All cases were divided into two groups(the awake group 19 cases and the unfavourable prognosis group 22 cases).Two weeks after admission the original EEGs were preformed in 41 patients suffering from severe TBI with duration of disturbance of展开更多
Inhibition of neurite growth, which is mediated by the Nogo-66 receptor (NgR), affects nerve regeneration following neural stem cell (NSC) transplantation. The present study utilized RNA interference to silence Ng...Inhibition of neurite growth, which is mediated by the Nogo-66 receptor (NgR), affects nerve regeneration following neural stem cell (NSC) transplantation. The present study utilized RNA interference to silence NgR gene expression in NSCs, which were subsequently transplanted into rats with traumatic brain injury. Following transplantation of NSCs transfected with small interfering RNA, typical neural cell-like morphology was detected in injured brain tissues, and was accompanied by absence of brain tissue cavity, increased growth-associated protein 43 mRNA and protein expression, and improved neurological function compared with NSC transplantation alone. Results demonstrated that NSC transplantation with silenced NgR gene promoted functional recovery following brain injury.展开更多
The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model u...The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters.In this study,we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences.The severe controlled cortical impact model was produced by an electronic controlled cortical impact device,while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube.Body temperature and mortality were recorded,and neurological deficits were assessed with the modified neurological severity score.Brain edema and bloodbrain barrier damage were evaluated by assessing brain water content and Evans blue extravasation.In addition,a cytokine array kit was used to detect inflammatory cytokines.Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining.Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations.More severe motor dysfunction was observed in the severe controlled cortical impact model,while more severe cognitive dysfunction was observed in the severe free weight drop model.Brain edema,inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group.The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage,with higher mortality and lower repeatability compared with the severe controlled cortical impact group.Severe brainstem damage was not found in the severe controlled cortical impact model.These results indicate that the severe controlled cortical impact model is relatively more stable,more reproducible,and shows obvious cerebral pathological changes at an earlier stage.Therefore,the severe controlled cortical impact model is likely more suitable for studies on severe focal traumatic brain injury,while the severe free weight drop model may be more apt for studies on diffuse axonal injury.All experimental procedures were approved by the Ethics Committee of Animal Experiments of Tianjin Medical University,China(approval No.IRB2012-028-02)in Febru ary 2012.展开更多
To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (sTBI).Methods All 33 patients with sTBI(GCS≤8) were randomly divided into hyp...To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (sTBI).Methods All 33 patients with sTBI(GCS≤8) were randomly divided into hypothermic group and control group.Microdialysis catheters were inserted into the cerebral cortex of perilesion,relative normal brain tissue and subcutaneous tissue of abdomen in order to analyze the concentrations of lactate/pyruvate (L/P),lactate/glucose (L/G) and the glycerol(Gly) in extracellular fluid (ECF).Results In comparison with the control group,the concentration of L/G,L/P and Gly in periphery and that of L/P in ECF of the “normal brain tissue” were significantly decreased in the hypothermic group.In control group,concentration of L/G,L/P and Gly in periphery were higher than those in relative normal brain.In the hypothermic group,L/P concentration in periphery was higher than that in relative normal brain.Conclusion Mild hypothermia protects brain by decreasing concentrations of L/G,L/P and Gly in periphery and L/P concentration in “normal brain tissue”.The energy crisis and membrane phospholipid breakage in periphery are easier to happen after TBI,where mild hypothermia exerts significant protgective role.12 refs,3 tabs.展开更多
We report a case of a 21-year-old man who had severe traumatic brain injury as a result of an accident at the age of 16 years. Two years and 4 months after the trauma, at the age of 19 years, he still had severe right...We report a case of a 21-year-old man who had severe traumatic brain injury as a result of an accident at the age of 16 years. Two years and 4 months after the trauma, at the age of 19 years, he still had severe right hemiplegia and cognitive dysfunction including aphasia and attention and memory disturbance. Conventional rehabilitation programs cou(d not resolve all of the neuropsychological problems. He started receiving Goshinjo therapy over a period of 22 months. Following the therapy, significant improvements in verbal intelligence quotient (assessed by the Wechsler Adult Intelligence Scale-Third Edition) and attention and concentration function (using the Wechsler Memory Scale-Revised), and remission of traumatic epilepsy were observed. Goshinjo therapy is suspected to be effective in the treatment of cognitive dysfunction in the chronic stage after severe traumatic brain injury.展开更多
2019年国际专家团基于Delphi方法的反复调查和现场讨论,完成了"A management algorithm for patients with intracranial pressure monitoring:the Seattle International Severe Traumatic Brain Injury Consensus Conference(SIB...2019年国际专家团基于Delphi方法的反复调查和现场讨论,完成了"A management algorithm for patients with intracranial pressure monitoring:the Seattle International Severe Traumatic Brain Injury Consensus Conference(SIBICC)"(简称"共识"),旨在引导对仅行颅内压监测的颅脑创伤患者实施合理的分级管理。本文对"共识"所涉及的"三阶梯颅内压管理流程"、各级治疗措施的应用原则,以及镇静治疗和颅内压监测停撤的判断流程进行解读,以期将国际颅脑创伤神经重症研究进展介绍给读者。展开更多
This study was a retrospective analysis of the epidemiologic profile of severe traumatic brain injuries managed at the surgical intensive care unit of the University Hospital Center of Yaoundé, Cameroon, between ...This study was a retrospective analysis of the epidemiologic profile of severe traumatic brain injuries managed at the surgical intensive care unit of the University Hospital Center of Yaoundé, Cameroon, between January 2011 and December 2015. All the patients admitted at the surgical intensive care unit for a traumatic brain injury with an initial Glasgow coma scale score ≤ 8 were included. One hundred and thirty-five cases were enrolled. One hundred and fourteen were males and 21 were females. Their mean age was 32.75 years. Forty-four patients were aged between 16 to 30 years. Road traffic accidents represented the first mode of injury with 101 cases and most of the patients were pedestrians hit by a car. Pupils and students were the most involved. Twenty-three patients had additional extracranial injury. On admission, 97 (71.85%) patients had GCS 7-8. A brain CT scan was done for 115 patients. Intracranial and intracerebral hemorrhages were the most frequent radiological findings with 57 cases. The overall mortality was 32.59% with 44 deaths. Thirty-two of the deaths occurred in patients with GCS 7 - 8 on admission. Ninety-one (67.40%) patients survived, 74 (54.81%) had persisting disabilities, while only 17 (12.59%) recovered fully. The following factors had an impact on the outcome: GCS at admission, pupillary anomalies, length of hospital stay, endotracheal intubation and surgery. Severe TBI remains a heavy socio-economic burden worldwide. In Cameroon where the health system is poorly organized, the outcome of individuals who sustained a severe TBI was dismal.展开更多
Emergency endovascular procedure for external carotid exclusion is required to save patients with life-threatening massive epistaxis from a ruptured sphenopalatine artery secondary to severe traumatic brain injury. We...Emergency endovascular procedure for external carotid exclusion is required to save patients with life-threatening massive epistaxis from a ruptured sphenopalatine artery secondary to severe traumatic brain injury. We report a case of a 20-year-old pedestrian admitted with a severe traumatic brain injury (TBI) secondary to an automobile (a lorry) road accident at high velocity. He presented to the emergency room in a coma with a Glasgow coma scale of 6/15 and massive epistaxis. He underwent emergency stabilization by sedation and was intubated. Body CT-Scan shows fracture of the palatine and pterygoid plate and multiple fractures of the skull with intracranial right frontal lobe hematoma. CT-Angiography was done immediately and confirmed a rupture of the sphenopalatine artery. The patient died of massive epistaxis while waiting for the endovascular procedure. This is a rare clinical case that needs unusual emergency endovascular management. Arterial embolization in emergency settings should be thought in front of any patient with persistent post-traumatic nose bleeding and be carried out as soon as possible to save the patient’s life.展开更多
S100B protein is released by astrocytes into the brain extracellular fluid following acute brain injury and elevated levels in CSF and serum have been shown to correlate with patient outcome following traumatic brain ...S100B protein is released by astrocytes into the brain extracellular fluid following acute brain injury and elevated levels in CSF and serum have been shown to correlate with patient outcome following traumatic brain injury. A prospective study of brain extracellular fluid (ECF) and serum S100B levels in 12 patients with severe head injury (GCS ≤ 8) was undertaken using intracerebral microdialysis to investigate whether a correlation with ECF S100B and outcome could be confirmed. Patient outcomes were assessed at 6 months using the Glasgow Outcome Scale (GOS) and divided into two outcome groups: group A, 8 survivors with either a good recovery or moderate disability (GOS scores of 4 or 5);and group B, 4 patients who died (GOS 1). Peak serum levels of S100B were significantly greater in group B (mean 6.03 ng/ml) compared with group A (mean 0.73 ng/ml) (P = 0.009). Group A had a mean peak S100B in the extracellular compartment of 186 ng/ml compared to 150 ng/ml in group B. There was no significant difference between the mean peak brain ECF S100B concentrations for the 2 outcome groups (P = 0.932). We confirm that intracerebral microdialysis can be used to sample S100B concentrations from brain extracellular fluid and our results suggest that the ECF S100B levels were variable and that there was no significant difference between the good outcome and poor outcome groups. In contrast, the serum levels of S100B of patients with a poor outcome were significantly higher than those with a good outcome.展开更多
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative...Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems.Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease.A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of central nervous system disease,including traumatic brain injury,have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care.In this review article,we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury.We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury.展开更多
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researche...A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems.In this review,we summarize the epidemiology,basic pathophysiology,current clinical treatment,the establishment of models,and the evaluation indicators that are commonly used for traumatic brain injury.We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles.Nanocarriers can overcome a variety of key biological barriers,improve drug bioavailability,increase intracellular penetration and retention time,achieve drug enrichment,control drug release,and achieve brain-targeting drug delivery.However,the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.展开更多
文摘Introduction: A traumatic brain injury (TBI) is caused by a forceful bump, blow, or jolt to the head or body, or by an object that pierces the skull and interrupts the normal function of the brain. Severe TBI is estimated at 73 cases per 100,000 people. The mortality of severe TBI can be reduced if a timely diagnosis and treatment of the injuries are made through prognostic factors. Objective: To determine the prognostic factors related to mortality in severe traumatic brain injury at the Hospital General de Zona No. 46. Material and Methods: Retrospective, cross-sectional and descriptive study in beneficiaries admitted to the Hospital General de Zona (HGZ) No. 46 of the Mexican Institute of Social Security (IMSS by its acronym in Spanish), with a diagnosis of severe TBI;the possible prognostic factors related to mortality of severe TBI were obtained from their records. Measures of central tendency and chi square were used for data analysis. Results: The study sample consisted of 60 subjects diagnosed with severe traumatic brain injury, of which 5 (8%) were women and 55 (92%) were men, and all 60 (100%) patients died. The average age of the sample was 26 with a standard deviation of 9 years. The variables that had a p value less than or equal to 0.05 were: Mydriasis, seizures, Hyperglycemia, Normoglycemia, Hypothermia and Hypotension. This means that these variables were associated with mortality. Conclusion: Statistical significance is demonstrated in prognostic factors of mortality in severe traumatic brain injury with p < 0.05 in the case of mydriasis, seizures, hyperglycemia, normoglycemia, hypothermia and hypotension.
文摘Calcitonin gene-related peptide(CGRP) has been implicated in multiple functions across many bioprocesses; however, whether CGRP is associated with severe traumatic brain injury(TBI) remains poorly understood. In this study, 96 adult patients with TBI(enrolled from September 2015 to December 2016) were divided into a mild/moderate TBI group(36 males and 25 females, aged 38 ± 13 years) and severe TBI group(22 males and 13 females, aged 38 ± 11 years) according to Glasgow Coma Scale scores. In addition, 25 healthy individuals were selected as controls(15 males and 10 females, aged 39 ± 13 years). Radioimmunoassay was used to detect serum levels of CGRP and endothelin-1 at admission and at 12, 24, 48, 72 hours, and 7 days after admission. CGRP levels were remarkably lower, but endothelin-1 levels were obviously higher in the severe TBI group compared with mild/moderate TBI and control groups. Levels of CGRP were remarkably lower, but endothelin-1 levels were obviously higher in deceased patients compared with patients who survived. Survival analysis and logistic regression showed that both CGRP and endothelin-1 levels were associated with patient mortality, with each serving as an independent risk factor for 6-month mortality of severe TBI patients. Moreover, TBI patients with lower serum CGRP levels had a higher risk of death. Thus, our retrospective analysis demonstrates the potential utility of CGRP as a new biomarker, monitoring method, and therapeutic target for TBI.
基金supported by the National Research Foundation(NRF)of Korea Grant funded by the Korean Government(MSIP)No.2015R1A2A2A01004073
文摘The cingulum,the neural tract connecting the orbitofrontal cortex with the medial temporal lobe,plays an important role in cognition(Bush et al.,2000).It is also important in memory because it provides cholinergic innervations to the cerebral cortex after obtaining innervation from the medial septal nucleus,the vertical nucleus of the diagonal band, and the nucleus basalis of Meynert via the medial cholinergic pathway (Nieuwenhuys et al., 2008; Naidich and Duvernoy, 2009; Hong and Jang, 2010a).
文摘Traumatic brain injury(TBI)represents a global pandemic and is currently a leading cause of injury related death worldwide.Unfortunately,those who survive initial injury often suffer devastating functional,social,and economic consequences.
文摘Objective: Severe traumatic brain injury (sTBI) is one of the common acute and critical diseases in neurosurgery. So we aim to explore the clinical effectiveness of an intelligent emergency care model in patients with severe traumatic brain injury. Methods: Eighty patients with severe traumatic brain injury (sTBI) who were treated in Zhuji People’s Hospital of Zhejiang Province from January 2019 to December 2021 were selected as the study subjects. The patients were divided into an observation group and a control group with 40 patients in each group according to the random number table method. Patients in the control group received conventional first-aid nursing mode intervention, and the intelligent emergency nursing mode was used for the observation group based on the control group. Comparisons were conducted between the two groups on the time of arrival to the emergency room, the time from the emergency room to the operating room, Glasgow Coma Scale (GCS) score before surgery, GCS score when leaving the Intensive Care Unit (ICU), the average length of ICU stay, the average length of hospital stay, the total hospital costs. Results: The time of arrival to the emergency room, the time from the emergency room to the operating room, the average length of ICU stay, the average length of hospital stay, and the total hospital costs in the observation group were significantly lower than those in the control group, and the differences were statistically significant (All P Conclusion: Intelligent emergency nursing mode can shorten the time of sTBI rescue, the length of ICU stay, and the average length of hospital stay, reduce the total hospitalization cost, improve the prognosis, with good efficacy, reduce the total cost of hospitalization, and improve the prognosis with better efficacy.
基金Supported by the Natural Science Foundation of Shandong province(Y2008C35)Technology Supporting Program of Qingdao(12-1-3-5-(1)-nsh)
文摘Objective To compare the conjoint effect of enteral nutrition (EN) and parenteral nutrition (PN)with single EN or PN on immune function, nutritional status, complications and clinical outcomes of patientswith severe traumatic brain injury (STBI).Methods A prospective randomized control trial was carried out from January 2009 to May 2012 inNeurological Intensive Care Unit (NICU). Patients of STBI who met the enrolment criteria (Glasgow ComaScale score 6~8; Nutritional Risk Screening ≥3) were randomly divided into 3 groups and were administratedEN, PN or EN+PN treatments respectively. The indexes of nutritional status, immune function,complications and clinical outcomes were examined and compared statistically.
文摘Objective To explore effects of decompressive craniectomy on cerebral blood flow volume and brain metabolism in different aged patients with severe traumatic brain injury. Methods 71 cases were divided into three groups according age: group A( 【 30 years) ,group B ( 30 ~ 50 years) 。
文摘Objective To study difference between intravascular cooling system and traditional moderate hypothermia in patients with severe traumatic brain injury. Methods Eighty sTBI patients were randomly divided into intravascular hypothermic groups (IVT) and traditional moderate hypothermia groups(HT) . Inclusion criteria included a Glasgow Coma Scale(GCS) score ≤8 and time from injury to admission must be within 12 hours.
基金Qinghai Provincial Agricultural Science and Technology Achievements Transformation and Extension Project(2013-N-531).
文摘Background:The aim of this work is to detect and compare the peripheral blood mi RNA expression profiles in patients with severe traumatic brain injury(s TBI)2,12,24,48,and 72 h after injury at high altitude and to predict the target genes of differential expressed mi RNAs.Methods:Twenty s TBI patients from high-altitude areas were randomly selected according to the inclusion and exclusion criteria and were divided into five groups:the 2-h group,12-h group,24-h group,48-h group,and 72-h group.Peripheral blood mi RNA expression profiles were detected using real-time quantitative PCR(q RT-PCR).Results:The expression levels of mi R-18 a,mi R-203,mi R-146 a,mi R-149,mi R-23 b,and mi R-let-7 b in peripheral blood showed significant differences between the 2-h group and the 12-h group.The expression levels of mi R-203,mi R-146 a,mi R-149,mi R-23 b,and mi R-let-7 f in peripheral blood were up-regulated in the 24-h group.In the 48-h group,the expression levels of mi R-181 d,mi R-29 a,and mi R-18 b were upregulated.In the 72-h group,the expression levels of mi R-203,mi R-146 a,mi R-149,mi R-23 b,and mi R-let-7 f changed.The main target genes of the differentiation expressed mi RNAs were genes that regulate inflammatory responses,apoptosis,and DNA damage/repair.Conclusions:mi RNAs may be involved in the pathogenesis of s TBI by dynamically regulating the target genes that regulate inflammatory responses,apoptosis,and DNA damage/repair pathways.
文摘Objective To explore quantitative electroencephalography in unconscious patients after severe traumatic brain injury (TBI) to predict awakening. Methods All cases were divided into two groups(the awake group 19 cases and the unfavourable prognosis group 22 cases).Two weeks after admission the original EEGs were preformed in 41 patients suffering from severe TBI with duration of disturbance of
基金the Science and Technology Foundation of Tianjin Health Bureau,No.2010KY04
文摘Inhibition of neurite growth, which is mediated by the Nogo-66 receptor (NgR), affects nerve regeneration following neural stem cell (NSC) transplantation. The present study utilized RNA interference to silence NgR gene expression in NSCs, which were subsequently transplanted into rats with traumatic brain injury. Following transplantation of NSCs transfected with small interfering RNA, typical neural cell-like morphology was detected in injured brain tissues, and was accompanied by absence of brain tissue cavity, increased growth-associated protein 43 mRNA and protein expression, and improved neurological function compared with NSC transplantation alone. Results demonstrated that NSC transplantation with silenced NgR gene promoted functional recovery following brain injury.
基金supported by the National Natural Science Foundation of China,No.81671221(to RCJ)
文摘The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters.In this study,we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences.The severe controlled cortical impact model was produced by an electronic controlled cortical impact device,while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube.Body temperature and mortality were recorded,and neurological deficits were assessed with the modified neurological severity score.Brain edema and bloodbrain barrier damage were evaluated by assessing brain water content and Evans blue extravasation.In addition,a cytokine array kit was used to detect inflammatory cytokines.Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining.Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations.More severe motor dysfunction was observed in the severe controlled cortical impact model,while more severe cognitive dysfunction was observed in the severe free weight drop model.Brain edema,inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group.The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage,with higher mortality and lower repeatability compared with the severe controlled cortical impact group.Severe brainstem damage was not found in the severe controlled cortical impact model.These results indicate that the severe controlled cortical impact model is relatively more stable,more reproducible,and shows obvious cerebral pathological changes at an earlier stage.Therefore,the severe controlled cortical impact model is likely more suitable for studies on severe focal traumatic brain injury,while the severe free weight drop model may be more apt for studies on diffuse axonal injury.All experimental procedures were approved by the Ethics Committee of Animal Experiments of Tianjin Medical University,China(approval No.IRB2012-028-02)in Febru ary 2012.
文摘To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (sTBI).Methods All 33 patients with sTBI(GCS≤8) were randomly divided into hypothermic group and control group.Microdialysis catheters were inserted into the cerebral cortex of perilesion,relative normal brain tissue and subcutaneous tissue of abdomen in order to analyze the concentrations of lactate/pyruvate (L/P),lactate/glucose (L/G) and the glycerol(Gly) in extracellular fluid (ECF).Results In comparison with the control group,the concentration of L/G,L/P and Gly in periphery and that of L/P in ECF of the “normal brain tissue” were significantly decreased in the hypothermic group.In control group,concentration of L/G,L/P and Gly in periphery were higher than those in relative normal brain.In the hypothermic group,L/P concentration in periphery was higher than that in relative normal brain.Conclusion Mild hypothermia protects brain by decreasing concentrations of L/G,L/P and Gly in periphery and L/P concentration in “normal brain tissue”.The energy crisis and membrane phospholipid breakage in periphery are easier to happen after TBI,where mild hypothermia exerts significant protgective role.12 refs,3 tabs.
文摘We report a case of a 21-year-old man who had severe traumatic brain injury as a result of an accident at the age of 16 years. Two years and 4 months after the trauma, at the age of 19 years, he still had severe right hemiplegia and cognitive dysfunction including aphasia and attention and memory disturbance. Conventional rehabilitation programs cou(d not resolve all of the neuropsychological problems. He started receiving Goshinjo therapy over a period of 22 months. Following the therapy, significant improvements in verbal intelligence quotient (assessed by the Wechsler Adult Intelligence Scale-Third Edition) and attention and concentration function (using the Wechsler Memory Scale-Revised), and remission of traumatic epilepsy were observed. Goshinjo therapy is suspected to be effective in the treatment of cognitive dysfunction in the chronic stage after severe traumatic brain injury.
文摘2019年国际专家团基于Delphi方法的反复调查和现场讨论,完成了"A management algorithm for patients with intracranial pressure monitoring:the Seattle International Severe Traumatic Brain Injury Consensus Conference(SIBICC)"(简称"共识"),旨在引导对仅行颅内压监测的颅脑创伤患者实施合理的分级管理。本文对"共识"所涉及的"三阶梯颅内压管理流程"、各级治疗措施的应用原则,以及镇静治疗和颅内压监测停撤的判断流程进行解读,以期将国际颅脑创伤神经重症研究进展介绍给读者。
文摘This study was a retrospective analysis of the epidemiologic profile of severe traumatic brain injuries managed at the surgical intensive care unit of the University Hospital Center of Yaoundé, Cameroon, between January 2011 and December 2015. All the patients admitted at the surgical intensive care unit for a traumatic brain injury with an initial Glasgow coma scale score ≤ 8 were included. One hundred and thirty-five cases were enrolled. One hundred and fourteen were males and 21 were females. Their mean age was 32.75 years. Forty-four patients were aged between 16 to 30 years. Road traffic accidents represented the first mode of injury with 101 cases and most of the patients were pedestrians hit by a car. Pupils and students were the most involved. Twenty-three patients had additional extracranial injury. On admission, 97 (71.85%) patients had GCS 7-8. A brain CT scan was done for 115 patients. Intracranial and intracerebral hemorrhages were the most frequent radiological findings with 57 cases. The overall mortality was 32.59% with 44 deaths. Thirty-two of the deaths occurred in patients with GCS 7 - 8 on admission. Ninety-one (67.40%) patients survived, 74 (54.81%) had persisting disabilities, while only 17 (12.59%) recovered fully. The following factors had an impact on the outcome: GCS at admission, pupillary anomalies, length of hospital stay, endotracheal intubation and surgery. Severe TBI remains a heavy socio-economic burden worldwide. In Cameroon where the health system is poorly organized, the outcome of individuals who sustained a severe TBI was dismal.
文摘Emergency endovascular procedure for external carotid exclusion is required to save patients with life-threatening massive epistaxis from a ruptured sphenopalatine artery secondary to severe traumatic brain injury. We report a case of a 20-year-old pedestrian admitted with a severe traumatic brain injury (TBI) secondary to an automobile (a lorry) road accident at high velocity. He presented to the emergency room in a coma with a Glasgow coma scale of 6/15 and massive epistaxis. He underwent emergency stabilization by sedation and was intubated. Body CT-Scan shows fracture of the palatine and pterygoid plate and multiple fractures of the skull with intracranial right frontal lobe hematoma. CT-Angiography was done immediately and confirmed a rupture of the sphenopalatine artery. The patient died of massive epistaxis while waiting for the endovascular procedure. This is a rare clinical case that needs unusual emergency endovascular management. Arterial embolization in emergency settings should be thought in front of any patient with persistent post-traumatic nose bleeding and be carried out as soon as possible to save the patient’s life.
文摘S100B protein is released by astrocytes into the brain extracellular fluid following acute brain injury and elevated levels in CSF and serum have been shown to correlate with patient outcome following traumatic brain injury. A prospective study of brain extracellular fluid (ECF) and serum S100B levels in 12 patients with severe head injury (GCS ≤ 8) was undertaken using intracerebral microdialysis to investigate whether a correlation with ECF S100B and outcome could be confirmed. Patient outcomes were assessed at 6 months using the Glasgow Outcome Scale (GOS) and divided into two outcome groups: group A, 8 survivors with either a good recovery or moderate disability (GOS scores of 4 or 5);and group B, 4 patients who died (GOS 1). Peak serum levels of S100B were significantly greater in group B (mean 6.03 ng/ml) compared with group A (mean 0.73 ng/ml) (P = 0.009). Group A had a mean peak S100B in the extracellular compartment of 186 ng/ml compared to 150 ng/ml in group B. There was no significant difference between the mean peak brain ECF S100B concentrations for the 2 outcome groups (P = 0.932). We confirm that intracerebral microdialysis can be used to sample S100B concentrations from brain extracellular fluid and our results suggest that the ECF S100B levels were variable and that there was no significant difference between the good outcome and poor outcome groups. In contrast, the serum levels of S100B of patients with a poor outcome were significantly higher than those with a good outcome.
文摘Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems.Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease.A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of central nervous system disease,including traumatic brain injury,have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care.In this review article,we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury.We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury.
基金supported by the Natural Science Foundation of Beijing,No.L222126(to LD)。
文摘A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems.In this review,we summarize the epidemiology,basic pathophysiology,current clinical treatment,the establishment of models,and the evaluation indicators that are commonly used for traumatic brain injury.We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles.Nanocarriers can overcome a variety of key biological barriers,improve drug bioavailability,increase intracellular penetration and retention time,achieve drug enrichment,control drug release,and achieve brain-targeting drug delivery.However,the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.